The $\mathcal{M}_{gg \rightarrow gH}$ amplitude at one loop with pySecDec

ACAT 2021 : 20th International Workshop on Advanced Computing and Analysis Techniques in Physics Research

November 29, 2021 to December 3, 2021 Virtual and IBS Science Culture Center, Daejeon, South Korea

Collaboration of . . .

Speaker : Chaitanya Paranjape

Prof. Dr. Gudrun Heinrich

Dr. Stephen Jones

Higgs production at HL-LHC: expected precision ~

Yellow Report 00134 CERN 1902.0 H-H

~ From a talk by G.H.

pySecDec : Numerical evaluation of dimensionally regulated parameter integrals using sector decomposition*

We will introduce two features that will be helpful for Multi-loop calculations

* Sophia Borowka, Gudrun Heinrich, Stephan Jahn, Stephen Jones, Matthias Kerner, Florian Langer, Vitaly Magerya, Andres Poldaru, Johannes Schlenk, Emilio Villa, Tom Zirke GitHub: github.com/gudrunhe/secdec ReadTheDocs: secdec.readthedocs.io/

$Two\ major\ new\ features\ of\ pySecDec$

- Optimised to reach given accuracy goal on the sum rather than on individual integrals
- Quantities like F ~ Form factor can be directly $F = c_1 I_1 + c_2 I_2 + \cdots$ evaluated :

Introduced to pySecDec in arXiv:2108.10807

4.

Two major new features of pySecDec

- Evaluation of loop integrals with "Expansion by regions" * method Integrals expressed as series expansion in terms of a 'smallness parameter'
- Ideal to apply when large scale differences are present between the invariants of the Integral

Hard region:
$$\mathbf{k} \sim \mathbf{p} \gg \mathbf{m}$$
 $\frac{1}{(k+p)^2(k^2-m^2)^2} \rightarrow \frac{1}{(k+p)^2(k^2)^2} \left(1 + 2\frac{m^2}{k^2} + \dots\right)$,
Soft region: $\mathbf{k} \sim \mathbf{m} \ll \mathbf{p}$ $\frac{1}{(k+p)^2(k^2-m^2)^2} \rightarrow \frac{1}{(k^2-m^2)^2 p^2} \left(1 - 2\frac{p \cdot k}{p^2} - \frac{k^2}{p^2} + \dots\right)$

Introduced to pySecDec in arXiv:2108.10807

* hep-ph/9711391

5. Let's study the application of both of these new features to Higgs plus jet production at one loop

Various partonic channels contribute to Higgs+jet production amplitude

 $\begin{array}{ll} qg \to qH, & gq \to qH, & \bar{q}g \to \bar{q}H, & g\bar{q} \to \bar{q}H, \\ q\bar{q} \to gH, & \bar{q}q \to gH, & gg \to gH. \end{array}$

• However, the calculation methodology is similar for all processes, thus we focus on the $g g \rightarrow g H$ process.

• The 14 integrals consist of 9 master integrals and 5 crossed integrals. Let us quickly review these integrals.

 $F = \sum P_n I_n$

Complete analytical treatment in arXiv:1711.09875

ready to evaluate with the "sum_package".

The Master Integrals

• General scalar Feynman integral :

$$I_{\alpha_1,\alpha_2,\alpha_3,\alpha_4} = \int \frac{d^d k_1}{i\pi^{d/2}} \cdot \frac{1}{D_1^{\alpha_1} D_2^{\alpha_2} D_3^{\alpha_3} D_4^{\alpha_4}}$$
$$D_1 = k_1^2 - m_t^2$$
$$D_2 = (k_1 - p_1)^2 - m_t^2$$
$$D_3 = (k_1 - p_1 - p_2)^2 - m_t^2$$
$$D_4 = (k_1 - p_1 - p_2 - p_3)^2 - m_t^2$$

• Different sub-topologies obtained by pinching various propagators, i.e. setting $\alpha_i = 0$

$$s_{ij} = (p_i + p_j)^2$$

$$p_1^2 = p_2^2 = p_3^2 = 0 \quad \& \quad p_4^2 = m_H^2$$

$$p_1 + p_2 + p_3 + p_4 = 0 \quad \Rightarrow \quad m_H^2 = s_{12} + s_{13} + s_{23}$$

8.

The Form Factors

- There are 4 physical form factors : F_{212} , F_{311} , F_{332} , F_{312}
- Because of the permutation invariance of the amplitude : F_{212} (s_{12} , s_{13} , s_{23})= F_{311} (s_{13} , s_{23} , s_{12})= F_{332} (s_{23} , s_{12} , s_{13})
- Thus only two of them independent. We take them to be F_{212} , F_{312} . Calculate them in terms of linear combinations of 14 master integrals

$$F_{212} = \sum_{n=1}^{14} (P_n I_n) \qquad \qquad F_{312} = \sum_{n=1}^{14} (M_n I_n)$$

Helicity amplitudes

Each gluon can have two helicities, we have 2³ = 8 helicity amplitudes

• Only two of them are independent, as a result of parity invariance and permutation invariance of the amplitude.

$$\mathcal{M}_{gg \to gH}^{h_1 h_2 h_3} = -\mathcal{M}_{gg \to gH}^{-h_1 - h_2 - h_3}$$

$$\mathcal{M}_{gg \to gH}^{++-}(s_{12}, s_{13}, s_{23}) = \mathcal{M}_{gg \to gH}^{+-+}(s_{13}, s_{23}, s_{12}) = \mathcal{M}_{gg \to gH}^{-++}(s_{23}, s_{12}, s_{13})$$

 Amplitude squared in terms of helicity amplitudes (We use this equation for final numerical evaluation)

$$|\mathcal{M}_{gg \to gH}|^2 = 2 \cdot \left(|\mathcal{M}_{gg \to gH}^{+++}|^2 + |\mathcal{M}_{gg \to gH}^{++-}|^2 + |\mathcal{M}_{gg \to gH}^{+-+}|^2 + |\mathcal{M}_{gg \to gH}^{-++}|^2 \right)$$

10.

Analytic expressions

The analytic expression for amplitude squared in terms of Lorentz invariants. $m_t \to \infty \Rightarrow m_t^2 >> |s_{ij}| \& m_t^2 >> m_H^2$

(This is the analytic result in Heavy Top Limit)

$$|\mathcal{M}_{gg \to gH}|^2 = \frac{4}{9m_t^4} \cdot \frac{(m_H^8 + s_{12}^4 + s_{13}^4 + s_{23}^4)}{s_{12}s_{13}s_{23}} + \mathcal{O}(\epsilon)$$

Implementation in pySecDec

First, define all the 14 integrals and corresponding coefficients in a separate file. (One for each form factor)

- Invoke the sum_package to evaluate the weighted sum. Define necessary parameters for integration and relative accuracy.
- For our example ~ weighted sum of 14 one-loop integrals,
- CPU @ 1.6 GHz : Relative precision ~ 10⁻⁴ computing time ~ 10 s

More information ~

Monday 29/11 : "Expansion by regions & Monte Carlo integration with pySecDec" ~ Dr. Vitalii Maheria

12.

Results

$m_t^2 >> |s_{ij}| \& m_t^2 >> m_H^2$

- $[s_{12}, s_{13}, s_{23}, m_t^2, m_H^2] = [0.0009, -0.0003, -0.000442, 1.0, 0.000157]$
- Integrator = Qmc verbose = True epsrel = 1e-4 epsabs = 1e-14

Integration results!

Integration conditions :

Numerical Result of The Ampltiude Squared with Helicity amplitudes $|M(gg \to gH)|^2$: (2.61402286630 +/- 0.0000000264) * 10^{-3}

Analytic Result of The Ampltiude Squared in Heavy Top Limit $|M(gg \to gH)|^2$: (2.61397604127) * 10^{-3}

% Difference with respect to analytic result in HTL : 0.00179

Expansion by regions

Express the integral as series expansion in 'smallness parameter' ~ z

- For the master integrals of our amplitude, we can expand them in inverse powers of m²_t, considering we will evaluate them in heavy top limit
- First order expansion for I_2 integral is expressed :

$$g_2(s_{12}, m_t^2) = \frac{-(6m_t^2 + s_{12})}{12m_t^4} + \epsilon \cdot \left(\frac{\gamma_E(6m_t^2 + s_{12})}{12m_t^4} + \frac{-\left(s_{12} + (6m_t^2 + s_{12}) \cdot \ln\frac{1}{m_t^2}\right)}{12m_t^4}\right)$$

 Define loop integral regularly, but multiply all invariants and masses (except m_t) with 'smallness parameter' ~ z.

Results

 $m_t^2 >> |s_{ij}| \& m_t^2 >> m_H^2$

Integration conditions :

- $[s_{12}, s_{13}, s_{23}, m_t^2, m_H^2] = [0.0009, -0.0003, -0.000442, 1.0, 0.000157]$
- Integrator = Qmc Z = 1 expansion_by_regions_order = 1

Integration results! (Only for the I₂ integral, others can be verified similarly)

Analytic Result : eps∧0 : -0.5000749999999999 eps∧1 : 0.288576123625634 Numerical Result : eps∧0 : -0.5000750000000+0.00000000000000001 +/- 3.389926606603533e-17+1.358594763071333e-17*I eps∧1 : 0.288576123625634-0.000000000000001 +/- 1.956787297766954e-17+7.843700577440028e-18*I

Summary & Outlook

Latest version : pySecDec 1.5.2 (arXiv:2108.10807)

- Demonstrated the application of two new features with three gluon Higgs amplitude at 1-loop ~ Higgs+jet production through ggF
 - Direct numerical evaluation of weighted sums of master integrals
 - Numerical evaluation of loop Integrals with method of expansion by regions

Efficient tools to tackle Multi-loop calculations

Thank you for listening!

Extra slides

The Master Integrals

 The final 14 Integrals are as follows. We maintain the same convention of order throughout this project.

$$\begin{split} &I_1 = g_1(m_t^2) = I_{2,0,0,0} &I_8 = g_6(s_{23}, m_t^2) = I_{0,1,1,1} \\ &I_2 = g_2(s_{12}, m_t^2) = I_{2,0,1,0} &I_9 = g_7(s_{12}, m_H^2, m_t^2) = I_{1,0,1,1} \\ &I_3 = g_2(s_{13}, m_t^2) = I_{2,0,1,0} :(p_2 \leftrightarrow p_3) &I_{10} = g_7(s_{13}, m_H^2, m_t^2) = I_{1,0,1,1} :(p_2 \leftrightarrow p_3) \\ &I_4 = g_3(s_{23}, m_t^2) = I_{0,2,0,1} &I_{11} = g_8(s_{23}, m_H^2, m_t^2) = I_{1,1,0,1} \\ &I_5 = g_4(m_H^2, m_t^2) = I_{2,0,0,1} &I_{12} = g_9(s_{12}, s_{23}, m_H^2, m_t^2) = I_{1,1,1,1} \\ &I_6 = g_5(s_{12}, m_t^2) = I_{1,1,1,0} &I_{13} = g_9(s_{12}, s_{13}, m_H^2, m_t^2) = I_{1,1,1,1} :(p_1 \leftrightarrow p_2) \\ &I_7 = g_5(s_{13}, m_t^2) = I_{1,1,1,0} :(p_2 \leftrightarrow p_3) &I_{14} = g_9(s_{23}, s_{13}, m_H^2, m_t^2) = I_{1,1,1,1} :(p_2 \leftrightarrow p_3) \end{split}$$

The $g_5(s_{12}, m_t^2)$ integral

- This integral needs an additional regulator while evaluating with expansion by regions. (pySecDec will notify)
- Introduce the extra regulator n_1 in the powers of the propagators, by consequently dividing it with prime numbers.
- Modified conditions for I_6 integral are as follows : (remaining conditions similar to others)

```
powerlist = ["1+n1", "1+ n1/2", "1+n1/3", "0+n1/5"]
```

regulators=["n1","eps"] requested_orders = [0,1]

Error analysis

Stays constant :
$$\frac{|s_{ij}|}{m_t^2} \sim \frac{m_H^2}{m_t^2} \sim 10^{-4}$$

m_t^2	$ \mathcal{A} $	ΔA	$ \mathcal{A}_0 $	% Numerical er-	% Deivation
				ror	
10^{-4}	2.61402286225	1.17774107579 ·	2.61397604127 ·	4.505473509 ·	1.79117853416 ·
	$\cdot 10^{1}$	10^{-8}	10^{1}	10^{-8}	10^{-3}
10^{-2}	2.61402286406	1.02678005700 ·	2.61397604127 ·	3.9279689215 ·	1.79124787455 ·
	$\cdot 10^{-1}$	10^{-10}	10^{-1}	10^{-8}	10^{-3}
1	2.61402286630	2.64465133233 ·	2.61397604127 ·	1.0117169847 ·	1.79133366574 \cdot
	$\cdot 10^{-3}$	10^{-12}	10^{-3}	10^{-7}	10^{-3}
10^{2}	2.61402287068	2.75310779611 ·	2.61397604127 ·	1.0532072336 ·	1.79150118589 ·
	$\cdot 10^{-5}$	10^{-14}	10^{-5}	10^{-7}	10^{-3}
10^{4}	2.61402285788	2.82184625032 ·	2.61397604127 ·	1.0795032805 ·	1.79101118864 ·
	$\cdot 10^{-7}$	10^{-16}	10^{-7}	10^{-7}	10^{-3}
10^{6}	2.61400648697	2.12661964630 ·	2.61397604127 ·	8.13547960536 ·	1.16472764313 ·
	$\cdot 10^{-9}$	10^{-14}	10^{-9}	10^{-4}	10^{-3}
10^{8}	2.65071422899	6.37139264259 ·	2.61397604127 ·	2.40365127742 ·	1.40545235067 ·
	$\cdot 10^{-11}$	10^{-13}	10^{-11}	10^{0}	10^{0}

Table 2: Error analysis with m_t^2 scaling

. . .