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Abstract

This is a short report on the study of Integration By Parts Identities with emphasis on their
mathematical structure and properties through various examples. Integration By Parts Identities
are extensively used for reduction of the number of Scalar Feynman Integrals which need to be
evaluated in the calculation of Scattering Amplitudes. This report is mostly based on the study of
[1],[2],[3] and references therein. The aim of this report is to help novel researchers become familiar
with the IBP reduction process fairly easily.

I am humbled and very much grateful to have had Dr. Taushif Ahmed’s Guidance during my
course of study. Invaluable Discussions with him helped me really understand the strucutre of IBP
Identities and the research work involved in the area of scattering amplitude calculations.
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Feynman Diagrams

Scattering cross-sections are crucial to study elementary particle reactions at high energy collid-
ers. They can be calculated theoretically with the framework of modern Quantum Field Theory and
then put to test with the experimental results. In order to calculate these cross-sections, one has
to calculate the scattering amplitude, which tells us about the Dynamics of the reaction. Instead of
opting for rigorous QFT calculations, one can calculate these scattering amplitudes from correspond-
ing Feynman Diagrams of Interaction. A typical Feynman diagram can have external legs, internal
lines and loops.

e

e

e

e

Such a Feynman Diagram can be decomposed into 3 components each with different roles

• Information about polarisation of particles

• Pure tensorial or spinoral part

• A scalar integral factor enclosing internal line properties

This decomposition is possible for any diagram without loss of generality by the virtue of Lorentz
in-variance and gauge in-variance of a physical Lagrangian.

The scalar Integral factors are commonly called as scalar Feynman Integrals. In order to calculate
the scattering cross-section of a reaction, a large number of scalar Feynman integrals need to be
evaluated. This number rapidly increases beyond thousands as soon as reaction becomes more and
more complex. Evaluating all these integrals individually is not practically feasible. However, for a
given topology of Feynman Integrals, there exists a set of Identities called as Integration By Parts
Identities. These identities can establish relations between various Feynman Integrals and therefore
can be used to express all the Integrals in terms of a much smaller subset called as Master Integrals.
Master Integrals of a given topology are set of Feynman Integrals which can be used to express all
the other scalar Feynman Integrals. Therefore, calculating a Scattering amplitude boils down to
reduction of the scalar Feynman integrals in terms of Master integrals and evaluating these Master
integrals (Master Integrals are also Scalar Feynman Integrals). Let us make ourselves familiar with
the structure of a generic Scalar Feynman Integral.
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Scalar Feynman Integrals

Every Scalar Feynman Integral has a corresponding Feynman Diagram. Let us introduce the
terminology for a typical Scalar Feynman Integral.

Let the Diagram have (E+1) number of external legs, then the number of independent external
momenta is equal to E. Set of these external momenta is given by :

P = {p1, p2, . . . , pE }

If the Diagram has L loops, then the number of loop momenta is L and their set is given by :

K = {k1, k2, . . . , kL }

The Total L+ E number of Momenta can be labelled as qi = k1, . . . , kL, p1, . . . , pE
The Diagram can have I number of internal lines with momenta l1, . . . , lI
which are just linear combinations of qi

Now, we can define the Scalar Products of these Momenta as : sij = qi · qj (j ≥ i)

For i > L , we get External Kinematic quantities. The Feynman Integral will be dependent on
these quantities after the Integral evaluation.

For 1 ≤ i ≤ L, we will get Scalar Products corresponding to the Integration variables. These are
what we will be dealing with along with the Propagators. The number of such Scalar products N is
given by :

N = L · E +
L · (L+ 1)

2

Propagators in the Diagram correspond to the Denominators of the Integral. For Example :

k

=
1

k2 + i0

k
=

1

k2 +m2 + i0

Propagators can either be Massive or Massless. The Corresponding denominators have been
demonstrated above. For I internal lines, we can label the denominators as D1, . . . , DI .

These Dj terms can be used to express a total I number of Scalar Products, thus help to reduce
the Integral in terms of Dj terms only.

For a Diagram with (E+1) external legs and L number of loops, I is given as :
I = 3L +E - 2

If the total number of Scalar Products N is greater than I, in that case, it is not possible to
express all sij as linear combinations of the denominators. Then the Number of Ir-reducible Scalar
Products is given by :

N - I =
(L− 1)(L+ 2E − 4)

2
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Vacuum Diagrams (E=0) have to be considered separately. In case of Vacuum Diagrams, the
corresponding I and N - I are given by :

I = 3(L −1) N - I =
(L− 2)(L− 3)

2

We want all Scalar Products sij to be expressible as linear functions of the Denominators Dj.
Therefore, we add irreducible numerators DI+1, . . . , DN which are linear functions of sij to make a
complete set of Denominators D1, . . . , DN which are linearly Independent. As a result, The Integral
can be expressed solely in terms of the D1, . . . , DN . The corresponding expressions are given as :

Da =
L∑
i=1

L+E∑
j=i

Aija sij +m2
a

sij =
N∑
a=1

Aaij(Da −m2
a)

Here, the matrix Aija is the inverse of Aaij.

Now we can define the Scalar Feynman Integral as Follows : ( In Dimensional regularization)

J(n1, . . . , nN) =
1

(iπd/2)L

∫
ddk1 . . . d

dkLf(k1, . . . , kL, p1, . . . , pE)

where,

f(k1, . . . , kL, p1, . . . , pE) =
1

Dn1
1 · · ·D

nN
N

For irreducible numerators na ≤ 0 , where a ∈ [I + 1, N ].

Key thing to note here is that, argument of J is a point in an N-dimensional Integer space.
Therefore, Scalar Feynman Integrals of a given Topology are associated with a point in ZN .

If na ≥ 0, then Da corresponds to the denominator of a propagator and if na < 0, then it cor-
responds to an irreducible numerator. Depending on whether na is positive or non-positive, the
N-dimensional integer space can be divided into various sectors. For a given Topology of Feynman
Integral, different sectors of the ZN space correspond to the various sub-topologies of the given Topol-
ogy. These sub-topologies are nothing but the Topologies of all the Integrals(Diagrams) which can be
obtained by ’shrinking’ the internal lines in the given Topology of Feynman Integral. Shrinking the
internal lines does not affect the momentum conservation. Now let us understand the Mathematical
prescription of sectors in the ZN space.

All the sectors are labelled as (θ1, . . . , θN). Where θi can either be 0 or 1. Therefore, number
of sectors is given by 2N . The sector (θ1, . . . , θN) is a set of all points (n1, . . . , nN) in ZN whose
coordinates obey the condition :

sign(nα − 1/2) = 2θα − 1

Precisely, the point (θ1, . . . , θN) belongs to the (θ1, . . . , θN) Sector and is called as the corner
point of the sector. We can see that, Integrals of the same sector have same number of denominators
and thus powers of denominators will determine their positions in that sector.

It is Natural to consider integrals with less denominators to be simpler. Consequently, the pure
negative sector ( all na ≤ 0) is the simplest because it is a trivial sector. If the Integral is zero at
all points of a sector, i.e. J = 0 everywhere in a sector, then that sector is called as a trivial sector.
The pure negative sector is always a trivial sector because a scaleless Integral is zero in dimensional
regularization even with additional polynomial factors in numerator. Scaleless Integrals are those
Integrals which gain an additional non-unity factor under some transformation.
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Therefore, as we move to the sectors with higher number of denominators, complexity of the
Integral increases. Some sectors can also be transformed into each other by symmetries.

n1

n2

(1, 1)

(1, 0)(0, 0)

(0, 1)

++

+−−−

−+

In case of N = 2, We have −−,−+,+−,++ Sectors with (0, 0), (0, 1), (1, 0), (1, 1) as the corre-
sponding corner points. −− is a Trivial sector and thus the lowest in ordering. ++ is the Highest
sector which can be solved when its lower sectors − + and + − have been solved. The sectors
−+ and+− cannot be compared with each other for ordering. Ordering of the Integrals according
to sectors plays a role in the IBP Reduction process. Speaking of IBPs, let us now Introduce the
Integration By Parts Identities (IBP) of Scalar Feynman Integrals.
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Integration By Parts

Integration By Parts Identities (IBPs) are a set of relations between Feynman Integrals of same
Topology that are the virtue of dimensionally regularizaed Feynman Integrals. As the name sug-
gests, they are reflection of the fact that the Integral of a total derivative is zero in dimensional
regularization.

Let us consider the redefinition of loop momenta as follows :

ki →Mijqj = Aijkj +Bijpj

where, the Transformation Matrix M has the form :

M =

A11 . . . A1L B11 . . . B1E
...

. . .
...

...
. . .

...
AL1 . . . ALL BL1 . . . BLE


It is an L× (L+ E) Transformation Matrix, provided that the substitution is invertible,

i.e. det A 6= 0.
Now, we can consider the corresponding infinitesimal transformation and obtain the Feynman

Integral in the new form. However, because Feynman Integrals stay invariant under such redefinition
of loop momenta, we come across a set of Identities which are commonly called as the Integration
By Parts Identities. As the Integration By Parts Identities correspond to the Infinitesimal Trans-
formations, they also form Lie Algebra. Following are the expressions of IBPs and their operators
:

OijJ(n1, . . . , nN) = 0

1

(iπd/2)L

∫
ddk1 . . . d

dkL Oijf = 0

where,

Oij = ∂i · qj =
∂

∂ki
· qj = dδij + qj ·

∂

∂ki
: i ∈ [1, L], j ∈ [1, L+ E]

Oij are set of operators which also constitute Lie Algebra [3] :

[Oij, Okl] = δilOkj − δkjOil

Let us brief up the Properties of IBPs :

• Total number of Oij operators is : L(L+E) which is the number of IBPs for a given Topology.

• IBPs can only relate the Feynman integrals belonging to the same Topology tree, i.e. Integrals
which can be transformed to each other by ’shrinking’, as explained earlier.

• IBPs are consequence of the fact that Integral of a total derivative is zero in dimensional
regularization. Another way to see it is that the dimensionally regularized Feynman Integrals
must stay invariant under redefinition of loop momenta.

Let us now understand how IBPs relate Feynman Integrals through following example.
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1-Loop Massive Vacuum Bubble

The Feynman Integral and Diagram corresponding to Vacuum Bubble are given as :

J(a) =
1

iπd/2

∫
ddk

1

(k2 +m2)a
=

a

k

where, D = k2 +m2 ⇒ k2 = D −m2

as E = 0, L = 1 , we have only 1 IBP Identity : O11 = ∂
∂k
· k

Let us now use the IBP to obtain a recurrence relation for this Topology.

O11J(a) = 0

⇒
∫
ddk

∂

∂kµ

[
kµ

(k2 +m2)a

]
= 0

⇒
∫
ddk

{
d

(k2 +m2)a
+ kµ

∂

∂kµ

[
1

(k2 +m2)a

]}
= 0

⇒
∫
ddk

{
d

(k2 +m2)a
+

−2a · k2

(k2 +m2)a+1

}
= 0

(1)

Substitute k2 = D −m2 , We get,

⇒
∫
ddk

{
d

Da
+
−2a · (D −m2)

Da+1

}
= 0

⇒
∫
ddk

{
d− 2a

Da
+

2am2

Da+1

}
= 0

⇒
∫
ddk

1

Da+1
=
−(d− 2a)

2am2

∫
ddk

1

Da

⇒ J(a+ 1) =
a− d

2

am2
J(a)

(2)

We know for a ≤ 0, The Integral is zero because of reasons mentioned earlier in the sector analysis.
Therefore, for a > 0 using this relation recursively we can represent every Feynman Integral of this
topology in terms of J(1) only. Recursion gives :

J(a) =
Γ
(
a− d

2

)
m2(a−1) Γ (a) Γ

(
1− d

2

) J(1)

Therefore, Because all the Feynman Integrals of this Topology can be expressed in terms of

J(1) =
1

iπd/2

∫
ddk

1

k2 +m2

It is called as the Master Integral of the Vacuum Bubble Topology.

7



1-Loop Massive Self Energy Diagram
The Feynman Integral and Diagram corresponding to Tadpole Topology is :

J(n1, n2) =
1

iπd/2

∫
ddk

1

Dn1
1 D

n2
2

p p

n1

n2

k

k + p

where,

D1 = k2 +m2 & D2 = (k + p)2 +m2

Here, we have single loop momenta and single external momenta which are { kµ } & { pµ }
Therefore, The Scalar Products k2, k · p can be expressed as :

k2 = D1 −m2 & k · p =
D2 −D1 − p2

2

As L = 1, E = 1 we have 2 IBP Identities at our hand with Operators as follows :

O11 =
∂

∂k
· k & O12 =

∂

∂k
· p

The O12 Identity gives trivial relations which can also be obtained by variable change k → −k−p.
Therefore, Let us solve for a relation in the all positive sector n1, n2 ≥ 0 using the O11J(n1, n2) = 0

⇒
∫
ddk

∂

∂kµ

[
kµ

(k2 +m2)n1((k + p)2 +m2)n2

]
= 0

⇒
∫
ddk

{
d

Dn1
1 D

n2
2

+
kµ

Dn2
2

∂

∂kµ
1

Dn1
1

+
kµ

Dn1
1

∂

∂kµ
1

Dn2
2

}
= 0

⇒
∫
ddk

{
d

Dn1
1 D

n2
2

− n1(2k
2)

Dn1+1
1 Dn2

2

− n2 2k · (k + p)

Dn1
1 D

n2+1
2

}
= 0

Substituting,

k2 = D1 −m2 & k · p =
D2 −D1 − p2

2
We get, ∫

ddk

{
d

Dn1
1 D

n2
2

− n1(2D1 − 2m2)

Dn1+1
1 Dn2

2

− n2 (D2 +D1 − 2m2 − p2)
Dn1

1 D
n2+1
2

}
= 0

Simplifying results in following relation :

(d− 2n1 − n2)J(n1, n2) + 2m2n1J(n1 + 1, n2)− n2J(n1 − 1, n2 + 1) + n2(2m
2 + p2)J(n1, n2 + 1) = 0

Let us try to understand how this relation can be used to relate Feynman Integrals. Let us put
n1 = 1 & n2 = 1 and simplify expression to get :
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⇒ (d− 3)J(1, 1) + 2m2J(2, 1)− J(0, 2) + (2m2 + p2)J(1, 2) = 0

{∵ k → −k − p ⇒ J(n1, n2) = J(n2, n1)}

⇒ J(1, 2) =
1

(4m2 + p2)
J(0, 2)− (d− 3)

(4m2 + p2)
J(1, 1)

However, from previous example we know,

⇒ J(0, 2) =
1− d

2

m2
J(0, 1)

⇒ J(1, 2) =
(2− d)

(2m2)(4m2 + p2)
J(0, 1)− (d− 3)

(4m2 + p2)
J(1, 1)

This is a well known relation for the Tadpole Topology [1] and provides us great insight to identify
the Master Integrals.

=
(2− d)

(2m2)(4m2 + p2)
+

(3− d)

(4m2 + p2)

Now, with the help of recurrence relation obtained from the IBP Identity,we can observe that the
Integral J(1, 2) has been completely expressed in terms J(0, 1) & J(1, 1). It can be convinced that
by using this relation recursively, any Integral in the Positive sector, can be expressed solely in terms
of these two Integrals. Note the role played by The symmetry of the Tadpole J(n1, n2) = J(n2, n1)
and the recurrence relations used in deciding the Master Integrals. Similarly, other sectors can be
solved with the Master Integrals.

We just examined how the IBP Identities provide us with the necessary recurrence relations which
can be used to relate various Feynman Integrals. One thing I would like to repeat again is the fact
that these identities can only relate the Feynman Integrals belonging to the same Topology tree.
IBPs can be used to reduce the Integrals in terms of some other Integrals, consequently help to
find out the Master Integrals of the Topology. Therefore, thousands of Feynman Integrals now can
be expressed in terms of a much smaller subset of Integrals called Master Integrals [4]. It can also
be proved that the set of Master Integrals is finite [5]. As a result, the number of Integrals to be
evaluated is reduced significantly. This process of using IBP Identities to obtain the set of Master
Integrals is termed as IBP Reduction. For arbitrary powers of propagators, the algorithm for IBP
Reduction need to be determined by hand. To Automate the process, method of Grobner Bases can
be used [7]. The Lie-algebra structure of IBP Identities can also be exploited for the same purpose
[3]. In case of evaluating with specific powers of propagators, Laporta Algorithm is widely used [8].
The algortihm follows a straightforward approach to use the specific values of the propagator powers
and solve the resulting huge linear systems. LiteRed is one of the public implementaions of the
Laporta Algortihm, which I used for my study during this project [9],[10]. I will now develop some
more formalism for the IBPs and then deal with a complex problem in detail.
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Operator Representation

Let us now introduce the Operators [3] Aα and Bα acting on the functions in ZN as follows :

(Aαf)(n1, . . . , nα, . . . , nN) = nα f(n1, . . . , nα + 1, . . . , nN)

(Bαf)(n1, . . . , nα, . . . , nN) = f(n1, . . . , nα − 1, . . . , nN)

These operators act on the function and not on the arguments. Realize that,

(AαBαf)(n1, . . . , nα, . . . , nN) = nα f(n1, . . . , nα, . . . , nN)

On the other hand,

(BαAαf)(n1, . . . , nα, . . . , nN) = (nα − 1) f(n1, . . . , nα, . . . , nN)

Also, if α 6= β it can be observed that,

(AαBβf)(n1, . . . , nα, . . . , nβ, . . . , nN) = (BβAαf)f(n1, . . . , nα, . . . , nβ, . . . , nN)

Therefore,
The Operators Aα and Bα form the Weyl algebra and their commutator is given as :

[Aα, Bβ] = δαβ

With the help of these operators, IBP Identities can be expressed as constraints on the function
J having the form :

−PJ = 0

where,
P = aαβAαBβ + bαAα + c

such that aαβ, bα, c are just some coefficients.
For example, Let us consider the IBP Identity obtained in the last problem.

(d− 2n1 − n2)J(n1, n2) + 2m2n1J(n1 + 1, n2)− n2J(n1 − 1, n2 + 1) + n2(2m
2 + p2)J(n1, n2 + 1) = 0

Let us represent it in terms of the Aα, Bα operators :

(d− 2A1B1 − A2B2)J(n1, n2) + 2m2A1J(n1, n2)− A2B1J(n1, n2) + A2(2m
2 + p2)J(n1, n2) = 0

⇒ −
[
2A1B1 + A2B2 + A2B1 − 2m2A1 − (2m2 + p2)A2 − d

]
J(n1, n2) = 0

Therefore, Corresponding to the IBP Identity O11 in the previous problem, we have a operator
P11 in terms of the operators Aα, Bα and is given by :

P11 = 2A1B1 + A2B2 + A2B1 − 2m2A1 − (2m2 + p2)A2 − d

Similarly, for Vacuum bubble problem, we have P11 as :

P11 = 2A1B1 − 2m2A1 − d
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Along with these Aα, Bα operators, we can also use the Index shifting operators. Index Shifting
Operators are defined as follows :

(a+f)(n1, . . . , na, . . . , nN) = f(n1, . . . , na + 1, . . . , nN)

(b−f)(n1, . . . , nb, . . . , nN) = f(n1, . . . , nb − 1, . . . , nN)

These shift operators are inverse to each other :

⇒ a+a− = a−a+ = 1

Easy to conclude that they all commute with each other. The earlier IBP Relations can be given
in terms of Index operators as follows :

Vacuum Bubble :
⇒

(
d− 2n+ 2n ·m21+

)
J(n) = 0

1-Loop Self Energy Diagram :

⇒
(
d− 2n1 − n2 + n12m

21+ + n22
+(2m2 + p2 − 1−)

)
J(n1, n2) = 0

We have had general idea of dealing with these Feynman Integrals along with application of IBPs.
Now, Let us apply our concepts to a more complex problem.
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2-Loop Massless Self Energy Diagram

The Feynman Integral and the Diagram corresponding to the problem are : [2]

J(n1, n2, n3, n4, n5) = J(n) =
1

(iπd/2)2

∫
ddk1d

dk2
1

Dn1
1 D

n2
2 D

n3
3 D

n4
4 D

n5
5

p p
n3

k1 k2

n4

n2n1

k1 + p k2 + p

k1 − k2n5

where,

D1 = −(k1 + p)2, D2 = −(k2 + p)2, D3 = −k21, D4 = −k22, D5 = −(k1 − k2)2

We have loop momenta as {kµ1 , k
µ
2} and external momenta as {pµ}, ⇒ L = 2 & E = 1. Therefore,

as we can see in the integral, number of scalar products N is 5.
Because we are dealing with a Scalar Feynman Integral, it can only depend on the Lorentz scalars

which do not include any loop momenta. For our problem, The Integral can depend only on p2. By
Dimensional analysis, we can write :

J(n) = G(n)(−p2)d−n1−n2−n3−n4−n5

For simplicity, let us set p2 = −1 such that J(n)⇒ G(n)

Let’s have a look at the symmetry of the problem now.

Consider the redefinition of loop momenta as k1 → −k1 − p , k2 → −k2 − p. It will result in
D1 ↔ D3 & D2 ↔ D4.

Similarly, for k1 → k2 , k2 → k1. It will result in D1 ↔ D2 & D3 ↔ D4.

Therefore, we can conclude that the Integral J(n1, n2, n3, n4, n5) is symmetric with respect to the
interchanges (1↔ 3, 2↔ 4) and (1↔ 2, 3↔ 4).

Observe that, if both n1 ≤ 0 and n2 ≤ 0 then, ⇒ J(n) = 0, because then it becomes a scaleless
Integral which is just zero in dimensional regularization.

Because of the symmetry, same argument applies to n3 ≤ 0 and n4 ≤ 0.

Now, if we consider that n5 = 0, it can be observed that the Integral transforms into multipli-
cation of two one-loop Integrals. Same thing can also be concluded via the Diagram. And, now if
any one of the remaining indices is zero, then we have multiplication with a scaleless Integral which
ultimately results in zero.

Concluding all our arguments, we can say that the Integral J(n) is zero if indices of two adjacent
lines are non-positive integers, because then it contains a scaleless Integral.

12



Before moving on, let me first introduce the well known n-loop massless sunset Integral, which
we will run across in our problem. It is given as follows :

Gn =
Γ(n+ 1− nd

2
) Γn+1(d

2
− 1)

Γ
(
(n+ 1)(d

2
− 1)

) = · · ·

Consider the case where n5 = 0 and the rest ni are all integers. We can see that, resultant
Integral is just the multiplication of two one loop massless integrals. Hence, all such Integrals are
proportional to the G2

1.

Now, consider the case where n1 = 0 and the rest ni are all integers. We will first calculate the
inner loop which will shift the power of the upper propagator in the outer loop) and then calculate
the outer loop. Diagrammatically it can be represented as follows :

It can be shown that all such Integrals are proportional to G2. The cases n2 = 0, n3 = 0, n4 = 0
are all symmetric to the n1 = 0 case.

Corresponding to the loop momenta {kµ1 , k
µ
2} and external momenta {pµ}, we have 5 scalar

products which can be expressed as :

k21 = −D3, k22 = −D4, k1 · k2 =
D5 −D3 −D4

2

k1 · p =
D3 −D1 + 1

2
, k2 · p =

D4 −D2 + 1

2

And the 6 IBP Identities are given as :

O11 =
∂

∂k1
· k1, O12 =

∂

∂k1
· k2, O13 =

∂

∂k1
· p

O21 =
∂

∂k2
· k1, O22 =

∂

∂k2
· k2, O23 =

∂

∂k2
· p

Now let us consider the all positive sector with the help of IBP Identities. The ∂2 · k2 relation in
all positive sector can be given as follows :

O22J(n) = 0

∫
ddk1d

dk2
∂

∂kµ2

[
kµ2

Dn1
1 D

n2
2 D

n3
3 D

n4
4 D

n5
5

]
= 0

∫
ddk1d

dk2

{
d

Dn1
1 D

n2
2 D

n3
3 D

n4
4 D

n5
5

+
n2(2k

2
2 + 2k2 · p)

Dn1
1 D

n2+1
2 Dn3

3 D
n4
4 D

n5
5

+
n4(2k

2
2)

Dn1
1 D

n2
2 D

n3
3 D

n4+1
4 Dn5

5

+
n5(2k

2
2 − 2k1 · k2)

Dn1
1 D

n2
2 D

n3
3 D

n4
4 D

n5+1
5

}
= 0

Substituting the Scalar products in terms of the Denominators, simplifying and introducing the
Index shifting operators we get,
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[
d− n2 − n5 − 2n4 + n22

+(1− 4−) + n55
+(3− − 4−)

]
G(n) = 0

Similarly, Let us obtain the ∂2 · k1 relation :

O21J(n) = 0

∫
ddk1d

dk2
∂

∂kµ2

[
kµ1

Dn1
1 D

n2
2 D

n3
3 D

n4
4 D

n5
5

]
= 0

∫
ddk1d

dk2

{
n2(2k1 · k2 + 2k1 · p)
Dn1

1 D
n2+1
2 Dn3

3 D
n4
4 D

n5
5

+
n4(2k1 · k2)

Dn1
1 D

n2
2 D

n3
3 D

n4+1
4 Dn5

5

+
n5(2k1 · k2 − 2k21)

Dn1
1 D

n2
2 D

n3
3 D

n4
4 D

n5+1
5

}
= 0

⇒
[
−n4 + n5 + n22

+(1 + 5− − 4− − 1−) + n44
+(5− − 3−) + n55

+(3− − 4−)
]
G(n) = 0

Subtracting both equations we will obtain the ∂2 · (k2 − k1) relation :

⇒
[
d− n2 − n4 − 2n5 + n22

+(1− − 5−) + n44
+(3− − 5−)

]
G(n) = 0

Now observing this expression, we can see it contains 1−,3−,5−. Therefore, each application of
this relation will reduce n1 + n3 + n5 by 1 corresponding to our G(n1, n2, n3, n4, n5) function. Using
it recursively, sooner or later, we will come across a case where at least one of the n1 or n3 or n5 is
zero. As a result, the Integral can be expressed in terms of G2

1 or G2. Concluding all our arguments,
we can confirm that any Integral in the positive sector can be expressed in terms of these G2

1 & G2

two Integrals, which are thus the Master Integrals.

A particular Interesting relation called as the Larin’s relation can also be used for the same
purpose. Let us see how to obtain that relation :

Consider our original Integral expression before we set p2 = −1 :

J(n) =
1

(iπd/2)2

∫
ddk1d

dk2
1

Dn1
1 D

n2
2 D

n3
3 D

n4
4 D

n5
5

= G(n)(−p2)d−
∑
ni

Now, Let us act with ∂
∂p
· (k1 + p) on the both sides.

Left hand side of the expression ⇒

=
1

(iπd/2)2

∫
ddk1d

dk2
∂

∂pµ

[
(k1 + p)µ

Dn1
1 D

n2
2 D

n3
3 D

n4
4 D

n5
5

]
=

1

(iπd/2)2

∫
ddk1d

dk2

{
d

Dn1
1 D

n2
2 D

n3
3 D

n4
4 D

n5
5

+
n12(k1 + p)2

Dn1+1
1 Dn2

2 D
n3
3 D

n4
4 D

n5
5

+
n22(k2 + p) · (k1 + p)

Dn1
1 D

n2+1
2 Dn3

3 D
n4
4 D

n5
5

}
Replacing scalar products with denominators, introducing index shifting operators and

setting p2 = −1 again we get,

=
[
d− 2n1 − n2 + n22

+(5− − 1−)
]
G(n)

Now, let us deal with the right hand side of our expression. But we have to be careful here to
act with ∂

∂p
· (k1 + p) on the right hand side, because it must be independent of loop momenta and
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thus we can’t directly apply it. We will have to first express it in terms of denominator terms which
are equivalent to the Index shifting operators on the right hand side. Let us see how :

(k1 + p)µ → (k1 + p) · p
p2

pµ →
(

1 +
D1 −D3

−p2

)
pµ

2
→
(

1 +
1− − 3−

−p2

)
pµ

2

Therefore, Applying the operator on right hand side it will look like :

=

(
1 +

1− − 3−

−p2

)
G(n)

∂

∂pµ

[
pµ

2
(−p2)d−

∑
ni

]
=

(
1 +

1− − 3−

−p2

)
G(n)

[
(−p2)(d−

∑
ni)(−p2)d−1−

∑
ni +

d

2
(−p2)d−

∑
ni

]
Setting p2 = −1 we get the right hand side as :

⇒ = (
3d

2
−
∑

ni)(1 + 1− − 3−)G(n)

As a result, subtracting the left hand side from right hand side, we obtain the Larin’s relation [6] :

⇒
[
d

2
+ n1 − n3 − n4 − n5 +

(
3d

2
−
∑

ni

)
(1− − 3−) + n22

+(1− − 5−)

]
G(n) = 0

This expression can be used recursively to reduce Integrals in place of the earlier one.
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Equivalence of IBP relations for same total
number of Loop & External Momenta

IBP Relations for a generic Scalar Feynman Integral with L loop momenta and E external mo-
menta can be reduced to have the same form as for an M = L+E loop vacuum Integral. Then they
differ only in the boundary conditions. Let us see how.

We know for a L-loop and Integral with E external momenta, the scalars which can be built from
the momenta are :

sij = qi · qj i, j ∈ [1,M ], j ≥ i

We classify these Lorentz scalars as Scalar products and Kinematic products. Scalar Products
correspond to Integration variables and their number is N . sij : i ∈ [1, L] & j ≥ i correspond to the
Scalar products. Kinematic products are scalars built from external momenta only and their number
is NE. sij : i ∈ [L+1, L+E] & j ≥ i correspond to the Kinematic products. Total number of scalars
K is thus given by :

K = N +NE =
M(M + 1)

2
; N = EL+

L(L+ 1)

2
& NE =

E(E + 1)

2

Now consider the Integral J(n1, . . . , nN) at some Kinematic point sij = s0ij (i ∈ [L+1,M ] & j ≥ i).
And now introduce the quantities Da = −sij + s0ij = −sij + m2

a (a ∈ [N + 1, K]) corresponding to
every kinematic product.

Now let us re-express the Integral as :

J(n1, . . . , nN) = D(E+1−d)/2J̃(n1, . . . , nN)

D =
det sij
det s0ij

: i, j ∈ [L+ 1,M ]

Now we expand it in powers of Da : a > N .

J̃(n1, . . . , nN) =
∞∑

nN+1=1

· · ·
∞∑

nK=1

J̃(n1, . . . , nN , nN+1, . . . , nK)D
nN+1−1
N+1 · · ·DnK−1

K

We are mainly interested in the value of our Integral at this Kinematic point (nN+1 = · · · = nK =

1). We assume J̃(n1, . . . , nN , nN+1, . . . , nK) = 0 if any index nN+1, . . . , nK ≤ 0, so that there is only
one sector corresponding to each of these ”external” indices.

The usual IBP relations can be obtained by applying N operators Oij with i ∈ [1, L], j ≥ i to

the usual integrand f . Thus, the ”evolution” of J̃(n1, . . . , nN , nN+1, . . . , nK) with respect to the
”internal” indices n1, . . . , nN is governed by these N ”vacuum” IBP relations.

We also need NE additional relations which govern the ”evolution” of J̃(n1, . . . , nN , nN+1, . . . , nK)
with respect to the ”external” indices nN+1, . . . , nK . They can be obtained by applying NE operators
Oij = qj · ∂i : i ∈ [L + 1,M ], j ≥ i to the both sides of the expansion of J̃(n1, . . . , nN) in powers
of Da, a > N . Both sides can be expanded in powers of Da and the identical coefficients give us the
relations with respect to ”external” indices.
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In this way, both ”internal” and ”external” relations can be obtained for J̃(n1, . . . , nN , nN+1, . . . , nK)
and all of them have same form as a M = L+E loop vacuum Integral J0(n1 . . . , nK). However, the

boundary conditions may differ. In the case of J̃(n1, . . . , nN , nN+1, . . . , nK), for all na ≤ 0 : a ∈
[N + 1, K], the Integral is zero. This does not have to be the case for the corresponding vacuum
diagram.

Let’s consider the example of 1-loop self energy Diagram (set m2 = 1) :

M(n1, n2) =
1

iπd/2

∫
ddk

1

Dn1
1 D

n2
2

p p

n2

n1

k

k + p

where,

D1 = 1− (k + p)2 & D2 = −k2

We know the Integral vanishes if n1 ≤ 0 because then it becomes a scaleless Integral. Here, as
L = 1, E = 1 ⇒ N = 2, NE = 1. Therefore, The Scalar products are {k2, k · p} and Kinematics
products : {p2}

Let us consider we want to calculate it on the Kinematic point p2 = 1. Consequently, we introduce
D3 = −p2 + 1 corresponding to {p2}. We can now re-express the Integral as follows :

M(n1, n2) = (p2)(2−d)/2M̃(n1, n2)

and now expanding in powers of D3 :

M̃(n1, n2) =
∞∑

n3=1

M̃(n1, n2, n3)D
n3−1
3

Here, M̃(n1, n2, n3) vanishes if n3 ≤ 0. Let us calculate the usual IBP Relations which will give

us evolution of M̃(n1, n2, n3) with respect to ”internal” indices.
The ∂ · k relation is given by :∫

ddk
∂

∂kµ

{
kµ

[1− (k + p)2]n1 [−k2]n2

}
= 0∫

ddk

{
d

[1− (k + p)2]n1 [−k2]n2
+

n12k · (k + p)2

[1− (k + p)2]n1+1[−k2]n2
+

n2(2k
2)

[1− (k + p)2]n1 [−k2]n2+1

}
= 0

Substituting ,

2k · p = D3 +D2 −D1 & k2 = −D2

Simplifying we get, [
d− n1 − 2n2 + n11

+(D3 − 2−)
]
M(n1, n2) = 0
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Similarly, solving for The ∂ · (k + p) relation we get,[
d− 2n1 − n2 + 2n11

+ + n22
+(D3 − 1−)

]
M(n1, n2) = 0

However, action of D3 on M(n1, n2) results in :

D3M(n1, n2) = (p2)(2−d)/2D3

∞∑
n3=1

M̃(n1, n2, n3)D
n3−1
3

shifting summation index n3 → n3 − 1 it is equivalent to :

= (p2)(2−d)/2
∞∑

n3=1

3−M̃(n1, n2, n3)D
n3−1
3

Therefore, the evolution of M̃(n1, n2, n3) with respect to ”internal” indices :[
d− n1 − 2n2 + n11

+(3− − 2−)
]
M̃(n1, n2, n3) = 0[

d− 2n1 − n2 + 2n11
+ + n22

+(3− − 1−)
]
M̃(n1, n2, n3) = 0

To find the evolution with respect to ”external” index n3 we act with p · ∂
∂p

in the expansion of

M(n1, n2) in powers of D3. Left hand side will look like :

= p · ∂
∂p
M(n1, n2)

=
1

iπd/2

∫
ddk pµ

∂

∂pµ

{
1

[1− (k + p)]n1 [−k2]n2

}
=
[
−n1 + n11

+(2 + 2− −D3)
]
M(n1, n2)

= (p2)(2−d)/2
∞∑

n3=1

[
−n1 + n11

+(2 + 2− − 3−)
]
M̃(n1, n2, n3)D

n3−1
3

and now on the right hand side :

= p · ∂
∂p

{
(p2)(2−d)/2

∞∑
n3=1

M̃(n1, n2, n3)D
n3−1
3

}
first We differentiate them separately ,

p · ∂
∂p

[(p2)(2−d)/2] = (2− d)(p2)(2−d)/2
∞∑

n3=1

M̃(n1, n2, n3)

p · ∂
∂p

(1− p2)n3−1 =
∞∑

n3=1

M̃(n1, n2, n3) · 2(n3 − 1)(Dn3−1
3 −Dn3−2

3 )

However, shifting the index n3 → n3 + 1 in the second term we can write :

=
∞∑

n3=1

[2(n3 − 1)− 2n33
+]M̃(n1, n2, n3)D

n3−1
3

Comparing coefficients of Dn3−1
3 from both sides we get the required evolution with respect to ”ex-

ternal” index n3 :[
−n1 + n11

+(2 + 2− − 3−)
]
M̃(n1, n2, n3) =

[
(2− d) + 2(n3 − 1)− 2n33

+
]
M̃(n1, n2, n3)

⇒
[
d− n1 − 2n3 + n11

+(2 + 2− − 3−) + 2n33
+
]
M̃(n1, n2, n3) = 0
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