
10 Lie Groups (Chapter 2) problems :

2A :

The matrix A is given as :

A =

0 0 1
0 0 0
1 0 0


By calculating A2 and A3 we observe that A follows relationship Am+2 = Am for all positive integers
m. Therefore, exponential Taylor expansion can be expressed in A and A2 matrices only.

eiαA =
n=∞∑
n=0

(iαA)n

n!
=

(
· · ·

)
A+

(
· · ·

)
A2

where, the coefficients for A and A2 can be collected to identify with the Taylor expansions of
hyperbolic functions.

sinhx = x+
x3

3!
+ · · ·

coshx = 1 +
x2

2!
+ · · ·

Finally, with all of the algebra, we can express eiαA as folows :

eiαA =
(
i sinα

)
A+

(
cosα

)
A2 =

 cosα 0 i sinα
0 0 0

i sinα 0 cosα


2B :

Assuming A and B are independent of α we define,

f(α) = eiαABe−iαA

Because A obviously commutes with itself, we can write,

d

dα
eiαA = (iA)eiαA = eiαA(iA)

Therefore, we can now calculate

d

dα
f(α) = i ·

(
eiαAABe−iαA − eiαABAe−iαA

)
d

dα
f(α) = i ·

(
eiαA[A,B]e−iαA

)
If [A,B] = B then we get a simple differential equation :

df(α)

dα
= i ·

(
eiαABe−iαA

)
= i · f(α)

Solution of which is given by,
f(α) = Ceiα
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But we know f(0) = B. Therefore, we can finally conclude that

f(α) = eiαABe−iαA = eiαB

2C :

3rd order expansion would require a bit extra hand work and lot of care, therefore I chose to skip
it for now, considering I have got the gist of the expansion.
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11 SU(2) (Chapter 3) problems :

3A :

It would be complicated to write the general procedure. I have understood the procedure involved
in the last section (section 3.5 : J3 values add), so I will choose to skip this for now. Besides, I feel
comfortable with the well known singlet-triplet example with the irreducible representations of spin-0
and spin-1.

1

2
⊗ 1

2
= 1⊕ 0

3B :

Let us first note down the handy relations of standard Pauli matrices corresponding to the SU(2)
generators.

[σi, σj] = 2iϵijkσk

{σi, σj} = 2δij

σiσj = δij + iϵijkσk

From the last identity we contract the indices to derive a identity that we will use,

uivjσiσj = uivjδij + iuivjϵijkσk

Which in vector notation reduces to,

(u⃗ · σ⃗)(v⃗ · σ⃗) = u⃗ · v⃗ + i(u⃗× v⃗) · σ⃗

Setting u⃗ = v⃗ = r̂ a unit vector we get,
(r̂ · σ⃗)2 = 12

Therefore, it is an Identity matrix for even powers and the original matrix for odd powers. We go
ahead and expand the exponential eir(r̂·σ⃗) in even and odd powers as follows :

eir(r̂·σ⃗) = 12 ·
n=∞∑
n=0

(ir)2n

(2n)!
+ (r̂ · σ⃗) ·

n=∞∑
n=0

(ir)2n+1

(2n+ 1)!

We can replace the sums by identifying them as the expansions of cos and sin functions respectively.

eir(r̂·σ⃗) = 12 ·
(
cos r

)
+ (r̂ · σ⃗) ·

(
i · sin r

)
ei(r⃗·σ⃗) = 12 · cos (|r⃗|) + i ·

(
r⃗ · σ⃗
|r⃗|

)
· sin (|r⃗|)

3C :

Spin-1 representation matrices for SU(2) are as follows :

J1 =
1√
2
·

0 1 0
1 0 1
0 1 0

 J2 =
1√
2
·

0 −i 0
i 0 −i
0 i 0

 J3 =

1 0 0
0 0 0
0 0 −1
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The structure constant of generators is ϵabc thus the adjoint representation matrices [Ta]bc = −iϵabc
are given as :

T1 =

0 0 0
0 0 −i
0 i 0

 T2 =

 0 0 i
0 0 0
−i 0 0

 T3 =

0 −i 0
i 0 0
0 0 0


Two matrices A and B are said to be similar if there exists a non-singular matrix P responsible for
the following similarity transformation :

A = P ·B · P−1

To find the P matrix, the matrices A and B should have same set of eigenvalues such that when
they are diagonalized they are identical. Their Diagonalized form can be written as :

D =M−1 · A ·M & D = N−1 ·B ·N

Where, M and N are eigenvector matrices of A and B respectively. Then the P matrix responsible
for similarity transformation can be obtained with a little algebra to be P = M · N−1. We can
efficiently calculate all Pi matrices relating Ji = Pi · Ti · P−1

i using following Mathematica4 code :

B = {{0, 0, 0}, {0, 0, -i}, {0, i, 0}};
A = 1/Sqrt[2]*{{0, 1, 0}, {1, 0, 1}, {0, 1, 0}};
vecsB = Eigenvectors[B];
vecsA = Eigenvectors[A];
P = Transpose[vecsA].Inverse[Transpose[vecsB]] // Chop // MatrixForm

We obtain the corresponding P matrices as follows :

P1 =

−1 0 1

0 i
√
2 0

1 0 1

 P2 =

 0 1 −1

−
√
2 0 0

0 1 1

 P3 =
1

2
·

 i 1 0
0 0 2
−i 1 0


3D :

We know σ2 and η1 are given as follows :

σ2 =

(
0 −i
i 0

)
η1 =

(
0 1
1 0

)
Then σ2 ⊗ η1 can directly be given as :

σ2 ⊗ η1 =

(
0⊗ η1 −i⊗ η1
i⊗ η1 0⊗ η1

)

σ2 ⊗ η1 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0


3E :

Because σ and η are two different independent representations, they commute with each other.
We will write the pauli matrices like matrices and use the identities to calculate.

4replace i with appropriate command for i in mathematica which is esc i i esc .
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σ1(σ2η1) = (σ1σ2)η1 = iσ3η1

(σ1η2)(σ1η3) = (σ2
1)(η2η3) = iη1

The problem (a) is :
[σa, σbηc] = [σa, σb]ηc = 2iϵabdσdηc

The problem (c) is :

[σ1η1, σ2η2] = σ1σ2η1η2 − σ2σ1η2η1 = (iσ3 · iη3)− (−iσ3) · (−iη3) = 0

For problem (b) let’s frist calculate :

σa{ηb, σcηd} = σaσc{ηb, ηd} = σaσc2δbd = 2(δac + iϵacmσm)δbd

Therefore,
Tr

(
2(δac + iϵacmσm)δbd

)
= 2 · Tr

(
δacδbd12

)
= 4δacδbd
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12 Tensor Operators (Chapter 4) problems :

First, I will note down all the different formulas which are relevant enough to refer back.

J+ |j,m⟩ =
√

(j −m)(j +m+ 1)

2
|j,m+ 1⟩

J− |j,m⟩ =
√

(j +m)(j −m+ 1)

2
|j,m− 1⟩

We first write down the states for 1 ⊗ 1
2
= 3

2
⊕ 1

2
with highest weight decomposition and acting

with J− repeatedly, and then taking the orthonormal states.∣∣∣∣32 , 32
〉

= |1, 1⟩
∣∣∣∣12 , 12

〉
∣∣∣∣32 , 12

〉
=

√
2√
3
· |1, 0⟩

∣∣∣∣12 , 12
〉
+

1√
3
· |1, 1⟩

∣∣∣∣12 ,−1

2

〉
∣∣∣∣32 ,−1

2

〉
=

1√
3
· |1,−1⟩

∣∣∣∣12 , 12
〉
+

√
2√
3
· |1, 0⟩

∣∣∣∣12 ,−1

2

〉
∣∣∣∣32 ,−3

2

〉
= |1,−1⟩

∣∣∣∣12 ,−1

2

〉
∣∣∣∣12 , 12

〉
=

1√
3
· |1, 0⟩

∣∣∣∣12 , 12
〉
−

√
2√
3
· |1, 1⟩

∣∣∣∣12 ,−1

2

〉
∣∣∣∣12 ,−1

2

〉
=

√
2√
3
· |1,−1⟩

∣∣∣∣12 , 12
〉
− 1√

3
· |1, 0⟩

∣∣∣∣12 ,−1

2

〉

spin 1/2 representation of the SU(2) generators :

J1 =
1

2
·
(
0 1
1 0

)
J2 =

1

2
·
(
0 −i
i 0

)
J3 =

1

2
·
(
1 0
0 −1

)
J+ =

1√
2
·
(
0 1
0 0

)
J− =

1√
2
·
(
0 0
1 0

)
spin 1 representation of the SU(2) generators :

J1 =
1√
2
·

0 1 0
1 0 1
0 1 0

 J2 =
1√
2
·

0 −i 0
i 0 −i
0 i 0

 J3 =

1 0 0
0 0 0
0 0 −1


J+ =

0 1 0
0 0 1
0 0 0

 J− =

0 0 0
1 0 0
0 1 0



Tensorial position operators in spin 1 representation : {r+1, r0, r−1} in terms of the position
operators : {r1, r2, r3}

r+1 =
−r1 − ir2√

2
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r0 = r3

r−1 =
r1 − ir2√

2

Using the algebra [Ja, rb] = −iϵacbrc , we can go ahead and derive the above relationa, such that
they are constrained with following algebra : (General Tensor operator transformation)

[Ja, O
s
l ] = Os

m[J
s
a ]ml

Let us also note down a few handy commutation relations :

[J+, r+1] = 0 [J−, r+1] = r0

[J+, r0] = r+1 [J−, r0] = r−1

[J+, r−1] = r0 [J−, r−1] = 0

Finally note down the Wigner-Eckart formula to help solve problems like the problem 4A.

⟨J,m′, β|Os
l |j,m, α⟩ = δm′,l+m ·

(
⟨J, l +m| · |s, l⟩ |j,m⟩

)
· kαβ

Where kαβ = ⟨J, β|Os |j, α⟩ are reduced matrix elements, and the quantity inside the round brackets
is the Clebsch-Gordan Coefficient. Let us see how to the above formula and other identities to solve
the textbook problem. First it is given that〈

1

2
,
1

2
, α

∣∣∣∣ r3 ∣∣∣∣12 , 12 , β
〉

= A

=⇒
〈
1

2
,
1

2
, α

∣∣∣∣ r0 ∣∣∣∣12 , 12 , β
〉

= A

To calculate
〈
1
2
, 1
2
, α

∣∣ r1 ∣∣12 ,−1
2
, β

〉
, we first need to express it in terms of tensorial operators to be able

to use the Wigner-Eckart formula. Therefore, we calculate and substitute r1 = −r+1+r−1√
2

. However,

note that [J−, r0] = r−1. Thus, contribution from r−1 is zero as J− kills both of the states on either
left or right.

=⇒
〈
1

2
,
1

2
, α

∣∣∣∣ r1 ∣∣∣∣12 ,−1

2
, β

〉
=

−1√
2
·
〈
1

2
,
1

2
, α

∣∣∣∣ r+1

∣∣∣∣12 ,−1

2
, β

〉
Now let us use the Wigner-Eckart formula on both of the matrix elements of interest.

A =

〈
1

2
,
1

2
, α

∣∣∣∣ r0 ∣∣∣∣12 , 12 , β
〉

=
(〈

1

2
,
1

2

∣∣∣∣ · |1, 0⟩ ∣∣∣∣12 , 12
〉)

· kβα

? =

〈
1

2
,
1

2
, α

∣∣∣∣ r+1

∣∣∣∣12 ,−1

2
, β

〉
=

(〈
1

2
,
1

2

∣∣∣∣ · |1, 1⟩ ∣∣∣∣12 ,−1

2

〉)
· kβα

The corresponding Clebsch-Gordan coefficients can be noted down from the above 1 ⊗ 1
2
= 3

2
⊕ 1

2

decomposition. Taking the ratio, we finally obtain

=⇒
〈
1

2
,
1

2
, α

∣∣∣∣ r+1

∣∣∣∣12 ,−1

2
, β

〉
= −A

√
2

Therefore substituting back to get the required answer,

=⇒
〈
1

2
,
1

2
, α

∣∣∣∣ r1 ∣∣∣∣12 ,−1

2
, β

〉
= A
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4A :

Given is a spin 1/2 operator with transformation :

[Ja, Ox] =
Oy

2
· [σa]yx

with x = 1, 2 and σa are the Pauli matrices. First let us note down the handy Commutation relations
that follow from this :

[J+, O1] = 0 [J+, O2] =
O1√
2

[J−, O1] =
O2√
2

[J−, O2] = 0

[J3, O1] =
O1

2
[J3, O2] = −O2

2

Actually, this problem is rather easy to just solve directly, so we will first do it directly without
Tensorial operator description. Later, I will also do it by identifying the Tensorial operators. Given
:

⟨3/2,−1/2, α|O1 |1,−1, β⟩ = A

and we need to find
⟨3/2,−3/2, α|O2 |1,−1, β⟩ =?

We can use O2 =
√
2 · [J−, O1] =

√
2 · (J−O1 − O1J

−). However, observe that J− kills the state on
right. We have only the first term

√
2J−O1, and we make the J− act on left state, which is equivalent

to its hermitian conjugate acting on right, which will be

J+ |3/2,−3/2, α⟩ =
√
3√
2
|3/2,−1/2, α⟩

Taking the hermitian conjugate we can write

=⇒ ⟨3/2,−1/2, α|O2 |1,−1, β⟩ =
√
3 · ⟨3/2,−1/2, α|O1 |1,−1, β⟩ = A

√
3

Which is our required answer.
Or, one can also identify the required spin 1/2 Tensorial Operators, as some linear combinations

of O1 and O2. Turns out5, the Operators are already in the standard tensorial description form6.
We can identify O1 = O+1/2 and O2 = O−1/2 as they follow the exact commutation algebra as the
Tensorial operators O+1/2, O−1/2 should. We can use the Wigner-Eckart theorem now for the matrix
elements of interest.

A = ⟨3/2,−1/2, α|O+1/2 |1,−1, β⟩ =
(
⟨3/2,−1/2| · |1/2, 1/2⟩ |1,−1⟩

)
· kαβ =

1√
3
· kαβ

? = ⟨3/2,−3/2, α|O−1/2 |1,−1, β⟩ =
(
⟨3/2,−3/2| · |1/2,−1/2⟩ |1,−1⟩

)
· kαβ = kαβ

Where we obtained the Clebsch-Gordan coefficients from the earlier defined 1⊗ 1
2
= 3

2
⊕ 1

2
decompo-

sition. Now we just take ratios to find

=⇒ ⟨3/2,−3/2, α|O−1/2 |1,−1, β⟩ = A
√
3

Which is consistent with our earlier answer.
5Not really turns out, it is obvious because Pauli matrices are the spin 1/2 representation of Ja.
6Which is why I guess it was easier to just solve directly.
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4B :

Given : [J+, (r+1)
2] = 0

spin 2 representation of the SU(2) generators :

J+ =


0

√
2 0 0 0

0 0
√
3 0 0

0 0 0
√
3 0

0 0 0 0
√
2

0 0 0 0 0

 J− =


0 0 0 0 0√
2 0 0 0 0

0
√
3 0 0 0

0 0
√
3 0 0

0 0 0
√
2 0



J3 =


2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2


We know a spin 2 tensor operator should satisfy following transformation :

[J−, O+2] = O+1

√
2

[J−, O+1] = O0

√
3

[J−, O0] = O−1

√
3

[J−, O−1] = O−2

√
2

[J−, O−2] = 0

Commuting with J− and using [A,BC] = [A,B]C +B[A,C] recursively, we can derive following
relations starting from (r+1)

2 :

[J−, r+1r+1] = r0r+1 + r+1r0

[J−, r0r+1 + r+1r0] = r−1r+1 + 2(r0)
2 + r+1r−1

[J−, r−1r+1 + 2(r0)
2 + r+1r−1] = 3r0r−1 + 3r−1r0

[J−, 3r0r−1 + 3r−1r0] = 6(r−1)
2

[J−, 6(r−1)
2] = 0

By comparing with transformation relations for Om operators, we can easily establish following
relations :

O+2 = (r+1)
2

O+1 =
r0r+1 + r+1r0√

2

O0 =
r−1r+1 + 2(r0)

2 + r+1r−1√
6

O−1 =
r0r−1 + r−1r0√

2

O−2 = (r−1)
2
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Now if we set r1 = sin(θ) cos(ϕ) , r2 = sin(θ) sin(ϕ) , r3 = cos(θ)

=⇒ r+1 =
− sin(θ)eiϕ√

2
r−1 =

sin(θ)e−iϕ

√
2

r0 = cos(θ)

Then we can clearly identify our Om operators with spherical harmonics Y m
l (θ, ϕ) with l = 2, with

the following relation :

Y m
2 (θ, ϕ) =

(1
2
·
√

15

2π

)
·Om

possible generalized conclusion : spin j tensor operators constructed with products of spin 1 position
tensor operators, are proportional to spin j spherical harmonics.

4C :

This problem is similar to the problem 3B . In place of the Identity matrix, we need to input the
said projection operator. Remember that for any projection operator P , it follows P n = P , 7 for all
positive integers n. We can write the format for final answer as :

eiα·α̂aXa = 1 + [cos(α)− 1] · (α̂aXa)
2 + i sin(α) · (α̂aXa)

7Once you project onto the system, consequent identical projections will be redundant
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13 Roots and weights (Chapter 6) problems :

6A :

Using [Hi, Eα] = αiEα and [Hi, Eβ] = βiEβ, we can calculate the direct commutator with the
cartan generator Hi

[Hi, [Eα, Eβ]] = [[Hi, Eα], Eβ] + [Eα, [Hi, Eβ]]

= αi[Eα, Eβ] + βi[Eα, Eβ]

= (α + β)i[Eα, Eβ]

[Hi, [Eα, Eβ]] = (α + β)i[Eα, Eβ]

Therefore, we can conclude that [Eα, Eβ] ∼ Eα+β

=⇒ [Eα, Eβ] = N · Eα+β

If α + β is not a root, we won’t be able to conclude the same. (N = 0 ? )

6B :

Similar to problem 5A, we can prove that [Eα, E−α−β] ∼ E−β and [Eβ, E−α−β] ∼ E−α. Let’s
assume following :

[Eα, E−α−β] = P · E−β

[Eβ, E−α−β] = Q · E−α

[Eα, Eβ] = N · Eα+β

Let’s apply the Jacobi Identity to Eα, Eβ, E−α−β : (Also use [Eγ, E−γ] = γiHi

0 = [Eα, [Eβ, E−α−β]] + [E−α−β, [Eα, Eβ]] + [Eβ, [E−α−β, Eα]]

0 = Q · [Eα, E−α]−N · [Eα+β, E−α−β]− P · [Eβ, E−β]

0 = (Qαi −Nαi −Nβi − Pβi)Hi

0 =
(
(Q−N)αi + (−P −N)βi

)
Hi

If α, β are linearly independent roots, then for whole quantity to be zero, their coefficients must also
be zero. ( Hi form a linear space )

=⇒ Q = N P = −N

6C :

We have H1 = σ3 = σ3 ⊗ 12 and H2 = σ3 ⊗ τ3, which we can evaluate as : (Refer problem 3D)

H1 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 H2 =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1
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The corresponding eigenvectors and weights are :

(1, 0, 0, 0)T : (1, 1)

(0, 1, 0, 0)T : (1,−1)

(0, 0, 1, 0)T : (−1,−1)

(0, 0, 0, 1)T : (−1, 1)

We will have two zero root vectors corresponding to Cartan generators. Rest roots are obtained
as differences of the above weights. Ex. (1, 1)− (1,−1) = (0, 2) and (1,−1)− (1, 1) = (0,−2) and so
on.

(0, 0), (0, 0), (0, 2), (0,−2), (2, 2), (−2,−2), (2, 0), (−2, 0), (2,−2), (−2, 2)
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14 SU(3) (Chapter 7) problems :

7A :

The SU(3) generators in fundamental representation are given as Ta = 1
2
· λa, where λa are the

standard 8 Gell-Mann matrices. In fundamental representation :

Tr(TaTb) =
1

2
· δab

and thus the real anti-symmetric structure constants defining the SU(3) algebra [Ta, Tb] = ifabcTc are
given as :

fabc = −2i · Tr([Ta, Tb]Tc)

The adjoint representation is then given as :

(Fa)bc = −i · fabc

With the standard matrices, one can easily calculate f147 =
1
2
and f458 =

√
3
2

.

7B :

We know the SU(2) algebra is given by [Ji, Jj] = iϵijkJk. In the SU(3) algebra, we can find
out that the structure constant f123 = f231 = f312 = +1 and thus proving that the fundamental
generators T1, T2, T3 form the SU(2) sub-algebra. Specifically, one can verify that :

[T1, T2] = iT3 [T2, T3] = iT1 [T3, T1] = iT2

proving the first part.

Now, observe that the these threee T1, T2, T3 SU(3) generators can be written as :

Ta =

(
Sa 0
0 0

)
where the S1, S2, S3 are the fundamental generators8 of SU(2). Naturally, we can see that in this
SU(2) sub-algebra, SU(3) triplet (3-vector) will transform as SU(2) doublet and as SU(2) singlet. Sa

will act on upper two components, just like a spinor while the third component is left untouched.
Refer to the formula from problem 4C to explicitely check this :

eiα·α̂aXa = 1 + [cos(α)− 1] · (α̂aXa)
2 + i sin(α) · (α̂aXa)

. The mathematical way to write this will be :

3 = 2⊕ 1

Which in words can be stated as : Under this SU(2) sub-algebra, 3 representation of SU(3) (funda-
mental) can be decomposed to ir-reps of SU(2) as a direct sum of the doublet (2 or fundamental)
and singlet representations of SU(2). Alternatively, one can say, under this SU(2) sub-algebra, SU(3)
triplet transforms like a doublet plus singlet under SU(2). Now, Let’s turn attention to transformation
under adjoint representation (8 representation) of SU(3). We know that for adjoint representation
we can write :

3⊗ 3 = 8⊕ 1

8Generators in fundamental representation.
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But, under this SU(2) sub-algebra, we know the decomposition 3 → 2 ⊕ 1 and 3 → 2 ⊕ 1. (2 = 2).
Substituting and calculating the tensor product :

(2⊕ 1)⊗ (2⊕ 1) = (2⊗ 2)⊕ (2⊗ 1)⊕ (1⊗ 2)⊕ (1⊗ 1)

And using the adjoint representation (3) of SU(2) : 2⊗ 2 = 3⊕ 1 , we can write :

8⊕ 1 = 3⊕ 2⊕ 2⊕ 1⊕ 1

Therefore, decomposition for adjoint representation under this sub-algebra is :

8 → 3⊕ 2⊕ 2⊕ 1

Stating : adjopint representaion of SU(3) is decomposed down to ir-reps of SU(2) as direct sum of
3,2,2,1 representations. Transforming like triplet plus two doublets plus a singlet.

7C :

I can prove that λ2, λ5, λ7 form the SU(2) algebra with a straight-forward approach, similar to
last problem. However, I am confused about the particular decomposition under this SU(2) sub-
algebra. I tried infinitesimal expansion but I couldn’t pick up the correct decomposition. I could use
a discussion. Here all three components are mixing so I was suspecting the decomposition might as
well be just 3 → 3 and then 8 → 3⊕ 5.
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