10 Lie Groups (Chapter 2) problems :
2A :

The matrix A is given as :

A:

_ o O
O O O

1
0
0

By calculating A% and A? we observe that A follows relationship A™*2 = A™ for all positive integers
m. Therefore, exponential Taylor expansion can be expressed in A and A? matrices only.

pioA _ _Z (iad)" = (- )A+ ()4

where, the coefficients for A and A% can be collected to identify with the Taylor expansions of

hyperbolic functions.
3

inhr — x
sin x—x+§+-~

22
coshr =14 —+4---
2!
Finally, with all of the algebra, we can express e*** as folows :

cosae 0 2sinwo
el = (z sin a)A + (cos a)A2 = 0 0 0
tsina 0 cosa

2B :

Assuming A and B are independent of o we define,
f(O[) — eiaABe—iozA
Because A obviously commutes with itself, we can write,

d . . )
%ezaA — (iA)ezaA — 620114(@4)

Therefore, we can now calculate

d . . . .
@f(&) — - (ezaAABefsz . ezaABAefsz>

%f{a) . <6iaA[A’ B]e—mA>

If [A, B] = B then we get a simple differential equation :

d];(j) =1i- (eiO‘ABe_mA> =i f(a)

Solution of which is given by,



But we know f(0) = B. Therefore, we can finally conclude that
f(OZ) — eiaABe—iaA — eiaB
2C :

3rd order expansion would require a bit extra hand work and lot of care, therefore I chose to skip
it for now, considering I have got the gist of the expansion.
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11 SU(2) (Chapter 3) problems :
3A :

It would be complicated to write the general procedure. I have understood the procedure involved
in the last section (section 3.5 : J; values add), so I will choose to skip this for now. Besides, I feel
comfortable with the well known singlet-triplet example with the irreducible representations of spin-0
and spin-1.

11

C®-=1®0

;@5 =19
3B :

Let us first note down the handy relations of standard Pauli matrices corresponding to the SU(2)
generators.

[O’i, O'j] = 2i€ijk0'k
{O’uO’j} = 25”
0i0; = 51‘]‘ + iEijkOk
From the last identity we contract the indices to derive a identity that we will use,
uinO'iJj = uivj(Sij -+ iUinGiijk

Which in vector notation reduces to,

Setting @ = U = 7 a unit vector we get,
(72 ‘ 0_3)2 = 12

Therefore, it is an Identity matrix for even powers and the original matrix for odd powers. We go
ahead and expand the exponential (™% in even and odd powers as follows :

(i) _ 1. . (ir) N (ir)
‘ 2 ; @y T 9) ; @2n 1 1)

We can replace the sums by identifying them as the expansions of cos and sin functions respectively.

() = 1, . (cos r) + (7. 5) - (2 - sin 7“)

- =

09 = 1y-cos () + i+ (T ) -sin )
3C :

Spin-1 representation matrices for SU(2) are as follows :

1 010 1 0 — 0 10 0
J=—7-11 0 1 Jo=—-1% 0 —i Js5={0 0 0
V2 010 V2 0 2 0 00 —1
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The structure constant of generators is €, thus the adjoint representation matrices [T, ]p. = —i€ape

are given as :

00 O 0 0 2 0 — 0
T'=10 0 — Th=10 0 0 Is=1+ 0 0
0 ¢« 0 —i 0 0 0 0 0

Two matrices A and B are said to be similar if there exists a non-singular matrix P responsible for

the following similarity transformation :
A=P-B-P!

To find the P matrix, the matrices A and B should have same set of eigenvalues such that when
they are diagonalized they are identical. Their Diagonalized form can be written as :

D=M'A-M & D=N'.B.-N

Where, M and N are eigenvector matrices of A and B respectively. Then the P matrix responsible
for similarity transformation can be obtained with a little algebra to be P = M - N=!. We can
efficiently calculate all P; matrices relating J; = P; - T; - P! using following Mathematica® code :

B = {{o, 0, o}, {0, 0, -i}, {0, i, O}};
A = 1/Sqrt[21*%{{0, 1, 0}, {1, 0, 1}, {0, 1, O}};
vecsB = Eigenvectors[B];

vecsA = Eigenvectors[A];
P = Transpose[vecsA].Inverse[Transpose[vecsB]] // Chop // MatrixForm

We obtain the corresponding P matrices as follows :

-1 0 1 0 1 —1 ) i 10
P=|0 i/2 0 P=-v2 0 0 P?,:é- 0 0 2
1 0 1 0 1 1 i 10

3D :

We know o5 and 7; are given as follows :

(0 —i (0 1
2=\ o) "1 o
Then o5 ® n; can directly be given as :

_(0®m —t®@m
02®"1_(73®m 0®m)

00 0 —i
00 —i 0
2OMm= g ; 9 0
7 0 0 O

3E :

Because ¢ and 7 are two different independent representations, they commute with each other.
We will write the pauli matrices like matrices and use the identities to calculate.

4replace i with appropriate command for ¢ in mathematica which is esc i i esc .
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o1(oam) = (0102)m = io3m

(o1m2)(01n3) = (07)(m2m3) = i
The problem (a) is :
[Oaa Obnc] - [Ga7 Ub]nc = 2i€abd0-dnc

The problem (c) is :
[017717 02772] = 01021172 — 02017211 = (ws : ”}3) - (—ws) : (—ins) =0
For problem (b) let’s frist calculate :
oa{ne, et} = 000 e, Na} = 0402000 = 2(6ac + i€acmOm) b

Therefore,
Tr (2(0ac + i€acmOm)0pa) = 2 - Tt (8acOpals) = 464c00
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12 Tensor Operators (Chapter 4) problems :

First, I will note down all the different formulas which are relevant enough to refer back.

J+‘j’m>:\/(j_m)<j2+m+1) j,m + 1)

7y = JUEE D,y

We first write down the states for 1 ® % = % &) % with highest weight decomposition and acting
with J~ repeatedly, and then taking the orthonormal states.

220

11

ol by nafy)
=
\

1, -1) '%%> *% . ‘1’_1>
-3y =1-nl-5)
33 =g wolsd) -l )

LD Bonoafbd) - nofhd)

2 2

1 (01 1 (0 —i 1 (1 0
‘]1_5'(1 0) Jz_ﬁ'(z‘ 0> J3_§'(0 —1>

1 01 1 0 0
Jt= . J= .
7o) 75 ()
spin 1 representation of the SU(2) generators :
1 010 1 0 — 0 10 O
J=—7-11 01 Jo=—-11 0 —1 Js5=10 0 0
V2 010 V2 10 00 —1
010 0 00
Jt=10 01 J =110 0
0 00 010

Tensorial position operators in spin 1 representation : {r,j,79,7_1} in terms of the position
operators : {ry,re,r3}

—ry —1rs

T = —-——
+1 \/5
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o = T3

T — ?:7'2
T_ =
1 NG
Using the algebra [J,,r,] = —i€,re , we can go ahead and derive the above relationa, such that

they are constrained with following algebra : (General Tensor operator transformation)
[Ja, O] = Op 1 T3]t
Let us also note down a few handy commutation relations :
[Jtral=0  [J,ra]=ro

[JJr, 7”0] =T41 [Ji, 7”0] =Tr_1

[J+,7’_1]:7"0 [J_,r_l]:()

Finally note down the Wigner-Eckart formula to help solve problems like the problem 4A.
(o, B O} 1, @) = St (L1 m - [5,0) |,m) ) - Ko

Where ko5 = (J, 8| O® |j, ) are reduced matrix elements, and the quantity inside the round brackets
is the Clebsch-Gordan Coefficient. Let us see how to the above formula and other identities to solve
the textbook problem. First it is given that

11 11
— - = A
<272705 T3 272?ﬁ>
11 11
> [ R = A
<2,2,Oé To 27276>

To calculate <%, %, oz‘ r1 %, —%, 15} > , we first need to express it in terms of tensorial operators to be able
to use the Wigner-Eckart formula. Therefore, we calculate and substitute r = ==t~ However,

V2
note that [J~,r¢] = r_;. Thus, contribution from r_; is zero as J~ kills both of the states on either

left or right.
11 1 1 3 -1 /11 1 1 3
:> - —. _ —— —_ — . —. —. —_ —
2727 27 27 \/§ 2727 27 27

Now let us use the Wigner-Eckart formula on both of the matrix elements of interest.

11 11 11 11
A= a) A a) :< _7_'170 a)a >'ka
<220‘ 226> <22“ >’22> p
11 11 11 11
r={=,z S8y =({z 2 1] -2 >~k;a
<2’2’O‘ 2 2’5> <<2’2‘ ">’2’ 2> s

The corresponding Clebsch-Gordan coefficients can be noted down from the above 1 ® % — =
decomposition. Taking the ratio, we finally obtain

r Ty1

To

T

N
s>
N |—

11 1 1
— <§,§,O{ T41 5,—§,5> :—A\/§
Therefore substituting back to get the required answer,
11 1 1
— (Z = - _Z —A
< 27 9 , A T1 27 9 ) B>
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4A :

Given is a spin 1/2 operator with transformation :
_ Oy
2

with x = 1,2 and o, are the Pauli matrices. First let us note down the handy Commutation relations
that follow from this :

[Ja, Os]

[0alye

[J*,04] =0 [JT, 0] =

SIS

%

[J77O1]:E [J7,0] =0
01 02
[J3,01] = > [J3,0q] = —

Actually, this problem is rather easy to just solve directly, so we will first do it directly without
Tensorial operator description. Later, I will also do it by identifying the Tensorial operators. Given

(3/2,-1/2,a|O1 |1, ~1,8) = A

and we need to find
<3/27 _3/27 O[| 02 |17 _17B> =?
We can use Oy = v/2-[J7,0,] = v/2- (J~O; — O1J~). However, observe that J~ kills the state on

right. We have only the first term v/2J~0O;, and we make the J~ act on left state, which is equivalent
to its hermitian conjugate acting on right, which will be

V3

JT3/2,-3/2,a) = 7

13/2,—-1/2, c)

Taking the hermitian conjugate we can write
= <3/2a —]_/2,CM| 02 |17 _175> - \/g ’ <3/2’ —]_/2,0é| Ol |17 _176> = A\/g

Which is our required answer.

Or, one can also identify the required spin 1/2 Tensorial Operators, as some linear combinations
of O; and O,. Turns out®, the Operators are already in the standard tensorial description form®.
We can identify O; = O4q/2 and Oy = O_y/, as they follow the exact commutation algebra as the
Tensorial operators O/, O_1 /5 should. We can use the Wigner-Eckart theorem now for the matrix
elements of interest.

A=(3/2,-1/2,0| O412[1,-1,8) = (<3/2, —1/2]-1/2,1/2) |1, —1>) kg = N ks

&

? = (3/2,-3/2,a| O_1s]1,—1,8) = (<3/2, —3/2] - [1/2,~1/2) |1, —1>) o = kap

Where we obtained the Clebsch-Gordan coefficients from the earlier defined 1 ® % = % &) % decompo-
sition. Now we just take ratios to find

= <3/27 _3/2’ O5| 071/2 |17 _176> = A\/g

Which is consistent with our earlier answer.

®Not really turns out, it is obvious because Pauli matrices are the spin 1/2 representation of .J,.
SWhich is why I guess it was easier to just solve directly.
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4B :
Given : It (r1)Y] =0

spin 2 representation of the SU(2) generators :

0v2 0 0 0 0O 0 0 0 0
0 0 3 0 0 V2 0 0 0 0
Jt=10 0 0 V3 0 Jo=10 V3 0 0 0
0 0 0 0 V2 0 0 /3 0 0
0 0 0 0 0 0 0 0 20
200 0 0
010 0 0
Js=1000 0 0
000 -1 0
000 0 =2

We know a spin 2 tensor operator should satisfy following transformation :

[J7,042] = 041V?2

[J7,041] = 0pV3

[J=,00] = 0_1V3

[J7,0-4] = 0_3V2
[J7,0-5] =0

Commuting with J~ and using [A, BC] = [A, B]C + B[A, C] recursively, we can derive following
relations starting from (r,;)?

[J7,rarqa] = roryn + o
[T, rorgr +74ar0) = roarg + 2(r)® +
[T, r 11+ 2(r0)* 4+ 7417 1] = 3ror_1 + 3r_179
[J7, 3ror_1 + 3r_1710) = 6(r_1)*
[J7,6(r-1)%] =0
By comparing with transformation relations for O,, operators, we can easily establish following
relations :
Opo = (r11)?
0, — ToT4+1 + T'4170
V2
r 1741+ 2(r0)® + 7y
V6
ror—1 + 1170
V2
O_p = (7”—1)2

00:

O_, =

28



Now if we set 7, = sin(f) cos(¢) , re = sin(#)sin(¢) , r3 = cos(d)

— sin(6)e*® _ sin(f)e "

i T A

Then we can clearly identify our O,, operators with spherical harmonics Y™ (6, ¢) with [ = 2, with

the following relation :
1 15
Y™ (6, :<_.,/_>. N
2 (0:0)=(51/35,.) ©

possible generalized conclusion : spin j tensor operators constructed with products of spin 1 position
tensor operators, are proportional to spin j spherical harmonics.

4C :

= T4 = ro = cos(6)

This problem is similar to the problem 3B . In place of the Identity matrix, we need to input the
said projection operator. Remember that for any projection operator P, it follows P* = P, 7 for all
positive integers n. We can write the format for final answer as :

el @eXe =1 4 [cos(ar) — 1] - (A X,)? + isin(a) - (daXa)

7Once you project onto the system, consequent identical projections will be redundant
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13 Roots and weights (Chapter 6) problems :
6A :

Using [H;, E.| = o, E, and [H;, Eg] = (;Es, we can calculate the direct commutator with the
cartan generator H;

[Hi, [EavE/o’H = [[Hi, Ea], Eg] + [Ea, [Hi, Eg]]
'[EOH Eﬁ] + Bi[Eom Eﬁ}
= (a+ B)ilEa, B3
[Hia [EOH Eﬁ]] (O‘ + ﬁ) [Em Eﬁ]

Therefore, we can conclude that [E,, Eg| ~ Eqyp
- [Ea, Eﬁ] =N Ea+ﬁ
If a 4 (8 is not a root, we won’t be able to conclude the same. (N =07 )

6B :

Similar to problem 5A, we can prove that [E,, E_,_g] ~ E_g and [Eg, E_,_5] ~ E_,. Let’s
assume following :

[Ea, E*a*ﬁ] =P -E_g
[Es, E—a-pl =@ E_q
[Eo, Egl = N - Enip

Let’s apply the Jacobi Identity to E,, Eg, E_,_p : (Also use [E,, E_,| = v;H;

0= [EOH [Eﬁv E—a—ﬁﬂ + [E—Oé—ﬁv [ECH Eﬂ“ + [E57 [E—a—ﬂ> EC!H
0=0Q- [Eaa E*a] - N- [Ea+,37 E*Oé*ﬁ] - P [E/B? E*,B]
= ((Q = N)a; + (=P —N)B) H,

If a, B are linearly independent roots, then for whole quantity to be zero, their coefficients must also
be zero. ( H; form a linear space )

— Q=N P=-N

6C :
We have H; = 03 = 03 ® 15 and Hy = 03 ® 73, which we can evaluate as : (Refer problem 3D)
10 0 O 1 0 0 0
aefn ) mefr
00 0 -1 0 0 0 1
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The corresponding eigenvectors and weights are :
(1,0,0,0)7  :(1,1)

(0,1,0,0)"  : (1,-1)
(0,0,1,00"  :(—=1,-1)
(0,0,0, 1) :(=1,1)

We will have two zero root vectors corresponding to Cartan generators. Rest roots are obtained
as differences of the above weights. Ex. (1,1) —(1,—1) = (0,2) and (1,—1) — (1,1) = (0, —2) and so
on.

(0,0), (0,0), (0,2), (0,-2), (2,2), (=2,-2), (2,0), (—2,0), (2,-2), (—2,2)
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14 SU(3) (Chapter 7) problems :
TA :

The SU(3) generators in fundamental representation are given as T, = % - A, Where A\, are the
standard 8 Gell-Mann matrices. In fundamental representation :

1
Tl"(TaTb) = 5 . 5ab

and thus the real anti-symmetric structure constants defining the SU(3) algebra [T, Tp] = i fup. 1. are
given as :

fabc =—21- Tr([Taa Tb]TC)

The adjoint representation is then given as :
(Fa)bc = —1- fabc

With the standard matrices, one can easily calculate fi47; = % and fis8 = \/75 .

7B :

We know the SU(2) algebra is given by [J;,J;] = i€;juJi. In the SU(3) algebra, we can find
out that the structure constant fio3 = fa31 = fsi2 = +1 and thus proving that the fundamental
generators 11, Ty, T3 form the SU(2) sub-algebra. Specifically, one can verify that :

(11, To] = ils [Ty, T3] =iy [T3,Th] = iT;
proving the first part.

Now, observe that the these threee 11,75, 75 SU(3) generators can be written as :

Sy 0
n= (5 o)

where the S}, S5, S5 are the fundamental generators® of SU(2). Naturally, we can see that in this
SU(2) sub-algebra, SU(3) triplet (3-vector) will transform as SU(2) doublet and as SU(2) singlet. S,
will act on upper two components, just like a spinor while the third component is left untouched.
Refer to the formula from problem 4C to explicitely check this :

e daXa — 1 4 [cos(a) — 1] - (A Xo)? + isin(a) - (0aX,)
. The mathematical way to write this will be :
3=201

Which in words can be stated as : Under this SU(2) sub-algebra, 3 representation of SU(3) (funda-
mental) can be decomposed to ir-reps of SU(2) as a direct sum of the doublet (2 or fundamental)
and singlet representations of SU(2). Alternatively, one can say, under this SU(2) sub-algebra, SU(3)
triplet transforms like a doublet plus singlet under SU(2). Now, Let’s turn attention to transformation
under adjoint representation (8 representation) of SU(3). We know that for adjoint representation
we can write :

33=8d1

8Generators in fundamental representation.
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But, under this SU(2) sub-algebra, we know the decomposition 3 = 2@ 1 and 3 - 2® 1. (2 = 2).
Substituting and calculating the tensor product :

2el)e2el)=02®2)a(2R1)(1®2)a(1®1)
And using the adjoint representation (3) of SU(2) : 2®2 =3 @ 1, we can write :
8®1=3020201®1
Therefore, decomposition for adjoint representation under this sub-algebra is :
8§—=30202d1

Stating : adjopint representaion of SU(3) is decomposed down to ir-reps of SU(2) as direct sum of
3,2,2,1 representations. Transforming like triplet plus two doublets plus a singlet.

7C

I can prove that Ay, A5, A7 form the SU(2) algebra with a straight-forward approach, similar to
last problem. However, I am confused about the particular decomposition under this SU(2) sub-
algebra. I tried infinitesimal expansion but I couldn’t pick up the correct decomposition. I could use
a discussion. Here all three components are mixing so I was suspecting the decomposition might as
well be just 3 — 3 and then 8 — 3 & 5.
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