
Numerical Evaluation of TheMgg→gH Amplitude : Higgs +
Jet Production through Gluon Fusion

Chaitanya Paranjape - IIT(ISM) Dhanbad, India

Abstract

This is the technical project report on the numerical evaluation of the amplitude for the gg → gH
process at 1-Loop. In this work, I will demonstrate the application of two new features sum package
and Expansion by regions introduced to pySecDec in [4]. The sum package will be used to calcu-
late form factors and then the amplitude, expressed as weighted sums of Master integrals, with error
bound on the sum rather than individual integral. The concerned example is associated with the
cross-section estimates for the Higgs + jet production at the LHC. In line with this work, multi-loop
calculations can seek the application of these features.

Contents

1 Introduction 2

2 The Master Integrals 3

3 The Form Factors 5

4 Analytic Expressions 9

5 Implementation in pySecDec 11

6 Error analysis & Conclusion 13

7 Acknowledgement 15

8 Appendix : A 17

9 Appendix : B 18

1

1 Introduction

The aim of this project is to numerically evaluate the 1-Loop squared matrix Element for the process
: gg → gH , using the newly developed sum package of pySecDec [4]. More about pySecDec can be
found out from pySecDec [2],[3] (https://secdec.readthedocs.io/en/latest/). The sum package is
designed to numerically evaluate the weighted superposition of a set of feynman integrals. Therefore,
our purpose would be to express the required amplitude in terms of the so called master integrals 1.
The derivation for our amplitude can be found out from [1]. Most of the equations we will be using
on-wards have been borrowed from the same reference only.

In the framework of Conventional Dimensional Regularization(CDR), spin and color averaged
absolute square of our amplitude is given by :

|Mgg→gH |2 =
1

(d− 2)2
· 1

(N2
c − 1)2

· |Mgg→gH |2 (II.46)

Where we have divided by the number of polarization (d − 2) & the number of colors (N2
c − 1) for

each of the incoming gluon. The absolute square of the matrix element is expressed in terms of the
form factors 2.

|Mgg→gH |2 =
1

4
·
[(d− 2)|F212|2s312s23

s13
+ F212F

∗
332s12s

2
23 + F212F

∗
311s

2
12s13 + (d− 2)F212F

∗
312s

2
12s23

+ F332F
∗
212s12s

2
23 +

(d− 2)|F332|2s13s323
s12

+ F332F
∗
311s

2
13s23 + (d− 2)F332F

∗
312s13s

2
23

+ F311F
∗
212s

2
12s13 + F311F

∗
332s

2
13s23 +

(d− 2)|F311|2s12s313
s23

+ (d− 2)F311F
∗
312s12s

2
13

+ (d− 2)F312F
∗
212s

2
12s23 + (d− 2)F312F

∗
332s13s

2
23 + (d− 2)F312F

∗
311s12s

2
13

+ (3d− 8)|F312|2s12s13s23
]

(II.48)

The form factor definitions can be obtained from [1]. Note here that only 4 of the form factors
contribute to the physical amplitude. Our job would be to express these form factors in terms of the
master integrals, such that we can provide them to the pySecDec for the numerical evaluation using
the sum package. We can then evaluate the required matrix element squared and verify our results
with the analytic expressions in the Heavy Top quark Limit (HTL).

The project report has been divided into two parts, first dealing with the calculations of inte-
grals, form factors and setting up all the equations we will be using. Second part will be focusing on
the implementation of the same with pySecDec and verifying our results with the previously set up
analytic expressions. We will now start with the first part by identifying the master integrals in the
1-Loop-Box topology of our gg → gH process.

All the files required for implementing our example in pySecDec can be found in the gggH1L
folder at the Git-hub repository for this project : PSD gggH1L 3

1The analytic calculation of the amplitude involves evaluating a large number of scalar feynman integrals. Instead
of evaluating all of the integrals, we can find out relations between these integrals with the help of the Integration By
Parts(IBP) identities. Using this method of IBP Reduction, we can express all the integrals in terms of a finite set of
integrals called as the master integrals.

2The form factors are the Lorentz invariant coefficients defined in the tensorial Decomposition of the amplitude,
the definitions for which can be found out from [1].

3https://github.com/CpSquared/PSD gggH1L

2

https://secdec.readthedocs.io/en/latest/
https://github.com/CpSquared/PSD_gggH1L

2 The Master Integrals

All of the master integrals in our case correspond to the different sub-topology of the 1-Loop-Box
topology. Let us set up the 1-Loop-Box topology for the gg → gH process.

k1

α1

α3

α2 α4

p1 p4

p2 p3

The kinematic constraints imposed will be p21 = p22 = p23 = 0 & p24 = m2
H along with the momentum

conservation : p1 + p2 + p3 + p4 = 0 ⇒ m2
H = s12 + s13 + s23.

Where we have defined the kinematic in-variants as : sij = (pi + pj)
2.

Conveniently, the number of independent scalar products is same as the number of propagators.
As a result, we can immediately define the general scalar feynman integral as follows :

Iα1,α2,α3,α4 =

∫
ddk1
iπd/2

· 1

Dα1
1 D

α2
2 D

α3
3 D

α4
4

with the propagators given by :
D1 = k21 −m2

t

D2 = (k1 − p1)2 −m2
t

D3 = (k1 − p1 − p2)2 −m2
t

D4 = (k1 − p1 − p2 − p3)2 −m2
t

Topology of the integral depends on the propagator powers, therefore, we can obtain the different
sub-topology by shrinking down the propagators, which would be setting the corresponding propa-
gator power to zero. Key thing to note here is that, shrinking the propagators does not violate the
momentum conservation at any point and the integral still belongs to the same topology family. As
a result, they can still be related by the IBP identities. Which is how we reduce the set of integrals
down to the set of master integrals. 4

The master integrals for our example have already been well defined and can be found out from
[1]. The 9 master integrals are as follows : (∗ have crossed Integrals)

g1(m
2
t) = I2,0,0,0 ∗ g2(s12,m

2
t) = I2,0,1,0 g3(s23,m

2
t) = I0,2,0,1

g4(m
2
H ,m

2
t) = I2,0,0,1 ∗ g5(s12,m

2
t) = I1,1,1,0 g6(s23,m

2
t) = I0,1,1,1

∗ g7(s12,m2
H ,m

2
t) = I1,0,1,1 g8(s23,m

2
H ,m

2
t) = I1,1,0,1 ∗ g9(s12, s23,m

2
H ,m

2
t) = I1,1,1,1

4For more information about master Integrals and IBP reduction, kindly refer to [5].

3

Along with these 9 master integrals, some crossed-integrals also appear in the expressions of form-
factors and amplitude. There are 5 extra crossed-integrals which we will also need in our expressions.
The required 5 crossed integrals are obtained as :

• g2(s13,m
2
t) : obtained from g2(s12,m

2
t) by Exchanging p2 and p3 .

• g5(s13,m
2
t) : obtained from g5(s12,m

2
t) by Exchanging p2 and p3 .

• g7(s13,m
2
H ,m

2
t) : obtained from g7(s12,m

2
H ,m

2
t) by Exchanging p2 and p3 .

• g9(s12, s13,m
2
H ,m

2
t) : obtained from g9(s12, s23,m

2
H ,m

2
t) by Exchanging p1 and p2 .

• g9(s23, s13,m
2
H ,m

2
t) : obtained from g9(s12, s23,m

2
H ,m

2
t) by Exchanging p2 and p3 .

Now, we have defined all the integrals we will need. For convenience, we will set a fixed order
for these integrals, and will stick to this order for all the labelling in the calculations and pySecDec
implementaion. The ordered 14 integrals are :

1. g1(m
2
t) = I2,0,0,0

2. g2(s12,m
2
t) = I2,0,1,0

3. g2(s13,m
2
t) = I2,0,1,0 : (p2 ↔ p3)

4. g3(s23,m
2
t) = I0,2,0,1

5. g4(m
2
H ,m

2
t) = I2,0,0,1

6. g5(s12,m
2
t) = I1,1,1,0

7. g5(s13,m
2
t) = I1,1,1,0 : (p2 ↔ p3)

8. g6(s23,m
2
t) = I0,1,1,1

9. g7(s12,m
2
H ,m

2
t) = I1,0,1,1

10. g7(s13,m
2
H ,m

2
t) = I1,0,1,1 : (p2 ↔ p3)

11. g8(s23,m
2
H ,m

2
t) = I1,1,0,1

12. g9(s12, s23,m
2
H ,m

2
t) = I1,1,1,1

13. g9(s12, s13,m
2
H ,m

2
t) = I1,1,1,1 : (p1 ↔ p2)

14. g9(s23, s13,m
2
H ,m

2
t) = I1,1,1,1 : (p2 ↔ p3)

Now we can turn our attention to the 4 form factors and express them as superposition of the
above integrals.

4

3 The Form Factors

There are only 4 form factors which appear in the physical amplitude, namely F212, F311, F332 & F312.
The expressions and derivations for which can be obtained from [1]. Our task would be to simplify
the provided definitions and express them as superposition of the 14 Integrals.

Out of the 4 factors : F212, F311, F332 are related through the permutation in-variance of the
amplitude. F212(s12, s13, s23) = F311(s13, s23, s12) = F332(s23, s12, s13) . So, once we have F212 ready,
pySecDec can calculate the other two easily by just changing the arguments.

Therefore, F212 and F312 are the two independent form factors we need to deal with.
Let’s first focus on F212 :
We define temporary set of coefficients T1, T2, · · · , T13 5 such that the F212 can be expressed as

follows : (defined at Pg 97 of [1])

F212(s12, s13, s23) = fabcCε · 2mteghtg
3
s ·
[
T1 · A(m2

H ,m
2
t)

+ T2 ·B(s12,m
2
H ,m

2
t)

+ T3 ·B(s13,m
2
H ,m

2
t)

+ T4 ·B(s23,m
2
H ,m

2
t)

+ T5 · C(s12, s13, s23,m
2
t)

+ T6 · C(s13, s23, s12,m
2
t)

+ T7 · C(s23, s12, s13,m
2
t)

+ T8 · g7(s12,m2
H ,m

2
t)

+ T9 · g7(s13,m2
H ,m

2
t)

+ T10 · g8(s23,m2
H ,m

2
t)

+ T11 · g9(s12, s23,m2
H ,m

2
t)

+ T12 · g9(s12, s13,m2
H ,m

2
t)

+ T13 · g9(s23, s13,m2
H ,m

2
t)
]

⇒ F212(s12, s13, s23) = fabcCε · 2mteghtg
3
s · f212(s12, s13, s23)

The definitions for A(), B() and C() functions [1] are as follows :

A(m2
H ,m

2
t) = g1(m

2
t) + (4m2

t −m2
H)g4(m

2
H ,m

2
t)

B(x,m2
H ,m

2
t) = (4m2

t − x)g2,3(x,m
2
t)− (4m2

t −m2
H)g4(m

2
H ,m

2
t)

C(x, y, z,m2
t) = (d− 2)g5,6(x,m

2
t)− (d− 2)

y + z

x
g7,8(x,m

2
H ,m

2
t)

Where gi,j can be either gi or gj depending on the argument x.

We define the normalized form factor as f212. This is what we will be providing as input to
pySecDec. Substituting the definitions for A(), B() and C() functions, we can express our normal-
ized form factor f212 as linear combination of the 14 Integrals with 14 coefficients. We call these
coefficients as P coefficients.

5Refer to the appendix: A, for the exact expressions of the T and N coefficients

5

The 14 P coefficients P1, P2, · · · , P14, are defined as follows :

f212(s12, s13, s23) =
[
P1 · g1(m2

t) + P2 · g2(s12,m2
t)

+ P3 · g2(s13,m2
t) + P4 · g3(s23,m2

t) + P5 · g4(m2
H ,m

2
t)

+ P6 · g5(s12,m2
t) + P7 · g5(s13,m2

t) + P8 · g6(s23,m2
t)

+ P9 · g7(s12,m2
H ,m

2
t) + P10 · g7(s13,m2

H ,m
2
t) + P11 · g8(s23,m2

H ,m
2
t)

+ P12 · g9(s12, s23,m2
H ,m

2
t) + P13 · g9(s12, s13,m2

H ,m
2
t)

+ P14 · g9(s23, s13,m2
H ,m

2
t)
]

The P Coefficients are obtained in terms of the T Coefficients as following :

P1 = T1

P2 = T2 · (4m2
t − s12)

P3 = T3 · (4m2
t − s13)

P4 = T4 · (4m2
t − s23)

P5 = (T1 − T2 − T3 − T4) · (4m2
t − s12 − s13 − s23) ∵ (m2

H = s12 + s13 + s23)

P6 = T5 · (d− 2)

P7 = T6 · (d− 2)

P8 = T7 · (d− 2)

P9 = T8 − T5 · (d− 2) · (s13 + s23)

s12

P10 = T9 − T6 · (d− 2) · (s23 + s12)

s13

P11 = T10 − T7 · (d− 2) · (s13 + s12)

s23

P12 = T11

P13 = T12

P14 = T13

The exact expressions for all the P and T coefficients can be viewed in the mathematica notebook
for the F212 form factor at the Git-hub repository for this project : PSD gggH1L

Now we have completely defined f212 form factor, ready for input to the pySecDec. We can deal
with the f311 and f332 during the pySecDec implementation part. Let’s focus on the F312 now. We
again use the definition from [1]. Similarly as for F212, we define temporary set of N Coefficients
such that form factor F312 can be expressed as follows :

6

https://github.com/CpSquared/PSD_gggH1L

F312(s12, s13, s23) = fabcCε · 2mteghtg
3
s ·
[
N1 · A(m2

H ,m
2
t)

+N2 ·B(s12,m
2
H ,m

2
t)

+N3 · C(s12, s13, s23,m
2
t)

+N4 · g7(s12,m2
H ,m

2
t)

+N5 · g9(s12, s23,m2
H ,m

2
t)

+N11 · A(m2
H ,m

2
t)

+N21 ·B(s13,m
2
H ,m

2
t)

+N31 · C(s13, s23, s12,m
2
t)

+N41 · g7(s13,m2
H ,m

2
t)

+N51 · g9(s13, s12,m2
H ,m

2
t)

+N12 · A(m2
H ,m

2
t)

+N22 ·B(s23,m
2
H ,m

2
t)

+N32 · C(s23, s12, s13,m
2
t)

+N42 · g7(s23,m2
H ,m

2
t)

+N52 · g9(s23, s13,m2
H ,m

2
t)
]

⇒ F312(s12, s13, s23) = fabcCε · 2mteghtg
3
s · f312(s12, s13, s23)

Where we have defined the normalized form factor as f312 which is what we will be providing as
input to pySecDec. Using the definitions of A(), B() and C(), we can express our normalized form
factor f312 as linear combination of the 14 fntegrals with 14 coefficients. We call these 14 coefficients
as M coefficients. The 14 M coefficients M1,M2, · · · ,M14 are defined as follows :

f312(s12, s13, s23) =
[
M1 · g1(m2

t) +M2 · g2(s12,m2
t)

+M3 · g2(s13,m2
t) +M4 · g3(s23,m2

t) +M5 · g4(m2
H ,m

2
t)

+M6 · g5(s12,m2
t) +M7 · g5(s13,m2

t) +M8 · g6(s23,m2
t)

+M9 · g7(s12,m2
H ,m

2
t) +M10 · g7(s13,m2

H ,m
2
t) +M11 · g8(s23,m2

H ,m
2
t)

+M12 · g9(s12, s23,m2
H ,m

2
t) +M13 · g9(s12, s13,m2

H ,m
2
t)

+M14 · g9(s23, s13,m2
H ,m

2
t)
]

The M coefficients in terms of N coefficients are expressed as follows :

M1 = N1 +N11 +N12

M2 = (4m2
t − s12) ·N2

M3 = (4m2
t − s13) ·N21

M4 = (4m2
t − s23) ·N22

M5 = (4m2
t − s12 − s13 − s23) · (N1 +N11 +N12 −N2 −N21 −N22)

M6 = (d− 2) ·N3

M7 = (d− 2) ·N31

7

M8 = (d− 2) ·N32

M9 = N4 −N3 ·
(d− 2)(s13 + s23)

s12

M10 = N41 −N31 ·
(d− 2)(s12 + s23)

s13

M11 = N42 −N32 ·
(d− 2)(s12 + s13)

s23

M12 = N5

M13 = N51

M14 = N52

The exact expressions for all the M and N coefficients can be viewed in the mathematica notebook
for the F312 form factor at the Git-hub repository for this project : PSD gggH1L

We have completely defined both of the required form factors and are ready to provide them as
input to pySecDec for numerical evaluation. But before that, we first set up the equation for matrix
element squared with the normalized form factors and also investigate the analytic expressions in
the Heavy Top quark Limit, which we will use for verification purpose.

8

https://github.com/CpSquared/PSD_gggH1L

4 Analytic Expressions

Once we have form factors in terms of the master integrals, all left to do is to substitute them into
equation (II.48) to calculate the matrix element squared. One thing to note here is that, because we
will be working with normalized form factors in pySecDec, We have to modify the equation (II.48)
for normalized form factors.

The normalization factor for all form factors is K = fabcCε · 2mteghtg
3
s . Therefore, we will

normalize the amplitude squared with |K|2.

K = fabcCε · 2mteghtg
3
s = fabc

1

(4π)2
· 2m2

t

v
g3s

⇒ |K|2 = Nc(N
2
c − 1) · m

4
tα

3
s

πv2

where we have used the relations :

Cε =
1

(4π)2
+O(ε), e · ght =

mt

v
, g2s = 4παs,

For the color algebra, we know
Tr(F aF b) = 2 · TR ·Ncδ

ab

set a = b and sum over, also use TR = 1/2

⇒ |fabc|2 = Nc(N
2
c − 1)

Therefore, we can now write Equation (II.48) with normalized form factors as follows :

|Mgg→gH |2

|K|2
=

1

4
·
[(d− 2)|f212|2s312s23

s13
+ f212f

∗
332s12s

2
23 + f212f

∗
311s

2
12s13 + (d− 2)f212f

∗
312s

2
12s23

+ f332f
∗
212s12s

2
23 +

(d− 2)|f332|2s13s323
s12

+ f332f
∗
311s

2
13s23 + (d− 2)f332f

∗
312s13s

2
23

+ f311f
∗
212s

2
12s13 + f311f

∗
332s

2
13s23 +

(d− 2)|f311|2s12s313
s23

+ (d− 2)f311f
∗
312s12s

2
13

+ (d− 2)f312f
∗
212s

2
12s23 + (d− 2)f312f

∗
332s13s

2
23 + (d− 2)f312f

∗
311s12s

2
13

+ (3d− 8)|f312|2s12s13s23
]

(II.48a)

This is the general expression for amplitude squared. (axial gauge expression has been used for
polarization sums. for more details : [1])

Once, we have numerically evaluated the form factors, we can substitute them in above expressions
to get final results. To verify our numerical results, we will use the analytic expression for the
amplitude squared, in the Heavy Top quark Limit. We will go over the details of Heavy Top quark
Limit(HTL) during the implementation part. For now, we use the expression for amplitude squared
in HTL, from [1].

|Mgg→gH |2 =
4

9
· Nc(N

2
c − 1)α3

s

πv2
· (m8

H + s412 + s413 + s423)

s12s13s23
+O(ε)

9

We normalize it with |K|2 to compare the results with (II.48a).

|Mgg→gH |2

|K|2
=

4

9m4
t

· (m8
H + s412 + s413 + s423)

s12s13s23
+O(ε)

This will be the final analytic Expression we will use for verification of our numerical results. We
will call this the normalized amplitude squared. The individual form factors can also be verified in
HTL. They will be expressed as follows :

f212 =
4

3m2
t s23

, f311 =
4

3m2
t s12

, f332 =
4

3m2
t s13

, f312 =
4

3m2
t

·
(1

s12
+

1

s13
+

1

s23

)
Substituting the above form factors in (II.48a) lead us back to the normalized amplitude squared.

We can also evaluate the helicity amplitudes. Because each gluon can have two helicities, we have
23 = 8 helicity amplitudes, although they are not all independent. They are all related by parity,
such that only half of them are now independent. Furthermore, thanks to the permutation invariance
of the amplitude, we finally have only two independent helicity amplitudes.

Mh1h2h3
gg→gH = −M−h1−h2−h3

gg→gH

M++−
gg→gH(s12, s13, s23) =M+−+

gg→gH(s13, s23, s12) =M−++
gg→gH(s23, s12, s13)

The two independent helicity amplitudes are represented in terms of the normalized form factors as
follows : (Upto a phase factor)

M+++
gg→gH =

√
s12s13s23√

2
·
(s12

2s13
f212 +

s23
2s12

f332 +
s13
2s23

f311 + f312

)
M++−

gg→gH =

√
s12s23
s13

· s12
2
√

2
· f212

We can now express the normalized amplitude squared as sum of helicity amplitudes squared.

|Mgg→gH |2

|K|2
= 2 ·

(
|M+++

gg→gH |
2 + |M++−

gg→gH |
2 + |M+−+

gg→gH |
2 + |M−++

gg→gH |
2
)

(II.54a)

We have now established all the theoretical framework we will need to feed our example to
pySecDec for numerical evaluation. We can head on over to the implementation part.

10

5 Implementation in pySecDec

All the files required for implementing our example in pySecDec can be found in the gggH1L folder
at the Git-hub repository for this project : PSD gggH1L 6

We need to numerically evaluate the form factors with the sum package. We have the form
factors as linear combination of integrals with corresponding coefficients. Therefore, first we need to
define all the 14 loop integrals in pySecDec. We can define them using any of the pySecDec func-
tions, but using the propagators is convenient, because then we will just have to change the powers
of propagators and pySecDec will take care of the rest. Extra care should be taken for defining the
crossed integrals, depending on the legs interchanged. The integrals are ordered according to the
previously established order only. IntegralsF212.py and IntegralsF312.py are both identical files with
same list of integrals defined, which will be used for the form factors F212 and F312.

CoefficientsF212.py and CoefficientsF312.py files have the corresponding coefficients defined in
order of the integrals. The coefficients are calculated in the mathematica notebooks and copied
using the raw input form. The numerator and denominator of coefficients are provided separately
to the pySecDec. Key thing to remember here is that, coefficients should only be in terms of our
real parameters s12, s13, s23,m

2
t ,m

2
H and ε. Therefore, first substitute d = 4 − 2ε before providing

them to pySecDec. Mind the order of the real parameters provided, same should be maintained for
generation and integration. If we change it during the integration, we will get the different form
factors, which we will get to later.

Once the integral coefficient files are ready, we can call the sum package through the correspond-
ing generate files for each form factor. It will provide the form factors as input to pySecDec, which
we can then compile. After compilation, only job left to do is to integrate at a given set of conditions
and match the results.

integrate gggH1L.py file will perform the integration at given values of the real parameters and
return the coefficient of ε0 term, for all the form factors. Because our Amplitude is non-divergent,
coefficients of ε−1 and ε−2 are just zero and we ignore them. Now, for the form factors f212 and
f312, we should maintain the correct order of real parameters, throughout all the files, to get correct
results. However, because the form factors f311 and f332 are related to f212 through in-variance of
amplitude under permutation, what we do is, we integrate the f212 two times again, at different order
of real parameters, corresponding to the definitions f311 and f332. This gives us the numerical results
for f311, f332 and thus, we have numerical results for all of the form factors. We use these values and
substitute them in the equations (II.48a),(II.54a) with d → 4 to get the numerical results for the
normalized amplitude squared. We can also evaluate the analytic result for the same in HTL, and
verify our numerical results.

Important thing while providing the values of real parameters for evaluation is that, they all must
be in the physical scattering regions. The physical scattering region is given by :

s12 > 0, s13 < 0, s23 < 0 & m2
H = s12 + s13 + s23

We verify our results in the Heavy Top quark Limit(HTL), where mt → ∞ such that, m2
t >>

|sij| & m2
t >> m2

H . In practice, to avoid large numerical uncertainties, we keep m2
t = 1 and choose

the other real parameters to be very small (<< 1) such that the ratio of scales is still small. Refer
to the appendix: B, for evaluation of integrals when large scale differences are present.

6https://github.com/CpSquared/PSD gggH1L

11

https://github.com/CpSquared/PSD_gggH1L

Now we have all the files ready to execute, we can try to verify our results in the HTL. We will
choose a set of conditions as follows and integrate to obtain results :

[s12, s13, s23,m
2
t ,m

2
H] = [0.0009,−0.0003,−0.000442873775, 1.00, 0.000157126225]

The explicit conditions we use for the integration are :
Integrator = Qmc verbose=True epsrel=1e-4 epsabs=1e-14

Integrating the form factors 7 we Obtain :

Numerical Results For All Normalized Form Factors upto a phase factor :
Normalized F212 : 3010.6672140051046 - 2.1398787465140891e-6*I
Normalized F311 : -1481.49506223742628 + 9.21215554439327461e-7*I
Normalized F332 : 4444.48518094738301 - 3.11541162364117957e-6*I
Normalized F312 : 5973.69066508077594 + 0.000016817304956009987*I
Analytic results of all Normalized Form Factors with heavy top quark limit
Analytic Result Normalized F212 : -3010.63961923086
Analytic Result Normalized F311 : 1481.4814814814813
Analytic Result Normalized F332 : -4444.444444444444
Analytic Result Normalized F312 : -5973.602582193824

Performing the amplitude calculation, we get following results :

Numerical Result of The Normalized Ampltiude Squared with eq (II.48a)
|M (gg− > gH)|2 : 0.00261402286263782088

Numerical Result of The Normalized Ampltiude Squared with eq (II.54a)
|M (gg− > gH)|2 : 0.00261402286263782093

Analytic Result of The Normalized Ampltiude Squared
|M (gg− > gH)|2 : 0.002613976041276658

We can go ahead and perform some detailed error analysis on the numerical results obtained, to
know more about the accuracy of our full numerical results with respect to the analytical counter-
parts in HTL.

7The *I represents multiplication with imaginary number i

12

6 Error analysis & Conclusion

The final amplitude expression we use for numerical evaluation is :

A = 2 ·
(
|M+++

gg→gH |
2 + |M++−

gg→gH |
2 + |M+−+

gg→gH |
2 + |M−++

gg→gH |
2
)

(II.54a)

However, the helicity amplitudes themselves depend on form factors, which have numerical un-
certainties associated with them, provided by pySecDec. We use these errors for form factors to
calculate the net propagating numerical error in the final amplitude evaluation ∆A. Thus, we write
out Numerical results for amplitude as :

Numerical amplitude result = A±∆A

We also calculate a few other measures :

% Numerical error =
∆A
A
× 100

and if A0 is the analytical amplitude(in HTL) value at corresponding kinematic point, we also
calculate :

% Deviation =
A−A0

A0

× 100

We will perform numerical evaluation at kinematic points scaled with m2
t as follows :

[s12, s13, s23,m
2
t ,m

2
H] = [0.0009 ·m2

t ,−0.0003 ·m2
t ,−0.000442873775 ·m2

t ,m
2
t , 0.000157126225 ·m2

t]

Consequently, the ratios
|sij |
m2

t
∼ 10−4 and

m2
H

m2
t
∼ 10−4 stay constant, and stay in the heavy top limit,

ir-respective of the value of m2
t . We will go ahead and vary the value of m2

t to observe the effect
in numerical error propagated by pySecDec for final amplitude. Let’s review the behaviour of error
with m2

t scaling in Table 1.

Specifically, the numerical results at m2
t = 1.

Numerical Result of The Normalized Ampltiude Squared with eq (II.54a)
|M (gg− > gH)|2 : (2.61402286630 +/- 0.00000000264) * 10−3

Analytic Result of The Normalized Ampltiude Squared in Heavy Top Limit
|M (gg− > gH)|2 : (2.61397604127) * 10−3

To conclude, if the m2
t is larger than other invariants by a factor ∼ 104, then DO NOT set the

value of m2
t greater than 108, it will lead to large numerical errors. Preferred value is anything less

than or ∼ 104 for lowest numerical errors. Then, the relative difference between the full numerical
results and analytical results in HTL is of order ∼ 10−4.

The arguements epsrel and epsabs control the relative and absolute inaccuracies of the numerical
result, and our numerical results are observed to obey these in satisfactory bounds. To extend on to
a complicated multi-loop example with the help of these weighted sums, one should take care of the
error bounds accordingly.

13

m2
t A ∆A A0 % Numerical er-

ror
% Deivation

10−12 2.61402286486
·109

1.10325112235 ·
100

2.61397604127 ·
109

4.2205106053 ·
10−8

1.79127841460 ·
10−3

10−10 2.61402286507
·107

1.12967622883 ·
10−2

2.61397604127 ·
107

4.3216004111 ·
10−8

1.79128625618 ·
10−3

10−8 2.61402286484
·105

1.14097376996 ·
10−4

2.61397604127 ·
105

4.3648193951 ·
10−8

1.79127778127 ·
10−3

10−6 2.61402286815
·103

1.00811514475 ·
10−6

2.61397604127 ·
103

3.8565658971 ·
10−8

1.79140435844 ·
10−3

10−4 2.61402286225
·101

1.17774107579 ·
10−8

2.61397604127 ·
101

4.505473509 ·
10−8

1.79117853416 ·
10−3

10−2 2.61402286406
·10−1

1.02678005700 ·
10−10

2.61397604127 ·
10−1

3.9279689215 ·
10−8

1.79124787455 ·
10−3

1 2.61402286630
·10−3

2.64465133233 ·
10−12

2.61397604127 ·
10−3

1.0117169847 ·
10−7

1.79133366574 ·
10−3

102 2.61402287068
·10−5

2.75310779611 ·
10−14

2.61397604127 ·
10−5

1.0532072336 ·
10−7

1.79150118589 ·
10−3

104 2.61402285788
·10−7

2.82184625032 ·
10−16

2.61397604127 ·
10−7

1.0795032805 ·
10−7

1.79101118864 ·
10−3

106 2.61400648697
·10−9

2.12661964630 ·
10−14

2.61397604127 ·
10−9

8.13547960536 ·
10−4

1.16472764313 ·
10−3

108 2.65071422899
·10−11

6.37139264259 ·
10−13

2.61397604127 ·
10−11

2.40365127742 ·
100

1.40545235067 ·
100

1010 2.03581279319
·10−9

2.94981372513 ·
10−9

2.61397604127 ·
10−13

1.44896118886 ·
102

7.78718459332 ·
105

Table 1: Error analysis with m2
t scaling

This completes the successful demonstration of sum package with pySecDec to numerically eval-
uate the 1-Loop amplitude for gg → gH, by using the linear combination of master integrals. This
will build the ground for the multi-loop calculations of crucial processes which will play an important
role in the collider phenomenology after the high luminosity upgrade at the LHC .

14

7 Acknowledgement

I would like to formally express my gratitude towards Prof. Dr. Gudrun Heinrich for her Invaluable
guidance during this project. During this project, I had the incredible opportunity to attend the
Collider Phenomenology Lectures, which were of great help with this project and educated me on
a wide array of topics for precision calculations. I would also like to thank the German Academic
Exchange Service (DAAD) for offering the DAAD WISE Scholarship and supporting undergraduates
at the research frontier.

15

References

[1] M. Boggia, J. M. Cruz-Martinez, H. Frellesvig, E. W. N. Glover, R. Gomez-Ambrosio,
G. Gonella, Y. Haddad, A. Ilnicka, S. P. Jones and Z. Kassabov, et al. J. Phys. G 45, no.6,
065004 (2018) doi:10.1088/1361-6471/aab812 [arXiv:1711.09875 [hep-ph]].

[2] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk and T. Zirke, Comput.
Phys. Commun. 222, 313-326 (2018) doi:10.1016/j.cpc.2017.09.015 [arXiv:1703.09692 [hep-ph]].

[3] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner and J. Schlenk, Comput. Phys.
Commun. 240, 120-137 (2019) doi:10.1016/j.cpc.2019.02.015 [arXiv:1811.11720 [physics.comp-
ph]].

[4] G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, F. Langer, V. Magerya, A. Pöldaru, J. Schlenk
and E. Villa, [arXiv:2108.10807 [hep-ph]].

[5] A. G. Grozin, Int. J. Mod. Phys. A 26, 2807-2854 (2011) doi:10.1142/S0217751X11053687
[arXiv:1104.3993 [hep-ph]].

[6] G. Heinrich, Phys. Rept. 922, 1-69 (2021) doi:10.1016/j.physrep.2021.03.006 [arXiv:2009.00516
[hep-ph]].

[7] M. Beneke and V. A. Smirnov, Nucl. Phys. B 522, 321-344 (1998) doi:10.1016/S0550-
3213(98)00138-2 [arXiv:hep-ph/9711391 [hep-ph]].

16

8 Appendix : A

• T Coefficient expressions :

T1 =
8(d− 4)(s212 − s13s23)

s12s23(d− 3)(d− 2)(s12 + s23)(s12 + s13)

T2 =
−4(d− 4)

s12s23(d− 3)(d− 2)

T3 =
−4s13

(
(d− 4)s212 + 2ds12s23 + ds223

)
s212s23(d− 3)(d− 2)(s12 + s23)2

T4 =
−4
(
(d− 4)s212 + 2ds12s13 + ds213

)
s212(d− 3)(d− 2)(s12 + s13)2

T5 =
−(d− 4)(s213 + s223)

s13s223(d− 3)(d− 2)

T6 =
−s213

(
(d− 4)s212 + ds223

)
s312s

2
23(d− 3)(d− 2)

T7 =
−s23

(
(d− 4)s212 + ds213

)
s312s13(d− 3)(d− 2)

T8 =
2(s13 + s23)

(
(d− 2)s12 − 8m2

t

)
s212s23(d− 2)

T9 =
2
(
(d− 2)s12(s

2
12 − s223)− 8m2

t (s
2
12 − 2s12s23 − s223)

)
s212s23(s12 + s23)(d− 2)

T10 =
2
(
(d− 2)s12(s

2
12 − s213)− 8m2

t (s
2
12 − 2s12s13 − s213)

)
s212s23(s12 + s13)(d− 2)

T11 =
(d− 4)s12s23 + (d− 3)s12s13 − 4m2

t s13
s12s13(d− 3)

T12 =
s13
(
(d− 4)s12s13 + (d− 3)s12s23 − 4m2

t s23
)

s12s223(d− 3)

T13 =
s13
(
− (d− 3)s212 + ds13s23 + 12m2

t s12
)

s312(d− 3)

• N Coefficient expressions :

N1 =
8(d− 4)

(d− 3)(d− 2)(s12s13 + s13s23)

N2 =
4
(
(d− 2)s213 + 2ds13s23 + (d− 2)s223

)
s13s23(d− 3)(d− 2)(s13 + s23)2

N3 =
s12(s

2
13 + s223)

s213s
2
23(d− 3)

N4 =
4
(
(d− 2)(s13 + s23)− 8m2

t

)
s12(d− 2)(s13 + s23)

N5 =

(
(d− 3)s213 − (d− 2)s12s23 − 4m2

t s13
)

s213(d− 3)

Ni1 = Ni(s12 → s13, s13 → s23, s23 → s12) Ni2 = Ni(s12 → s23, s13 → s12, s23 → s13)

where i = {1, 2, 3, 4, 5}

17

9 Appendix : B

• Evaluation of master integrals with expansion by regions :

Expansion by regions is a systematic method to express the feynman integral as a series expansion
in terms of a ‘smallness parameter’, which arises if there are large scale differences present between
kinematic invariants or the masses of the integral. While evaluating the integrals regularly, pySecDec
cannot handle large scale differences, which is why this particular method is very useful in such cases.
Therefore, to evaluate the integrals in heavy top limit, we will employ this method and try to verify
our results with the analytic expressions from [1]. For a brief review of this method, refer to the
section 3.2.7 of [6] or the original article [7].

Because we are working in the HTL, the integrals are expanded in inverse powers of m2
t . The

analytic expressions for the master integrals 8 can be calculated to be as follows :

g2(s12,m
2
t) =

−(6m2
t + s12)

12m4
t

+ ε ·
(γE(6m2

t + s12)

12m4
t

+
−
(
s12 + (6m2

t + s12) · ln 1
m2

t

)
12m4

t

)
g5(s12,m

2
t) =

−(12m2
t + s12)

24m4
t

+ ε ·
(γE(12m2

t + s12)

24m4
t

+
−
(
s12 + (12m2

t + s12) · ln 1
m2

t

)
24m4

t

)

g7(s12,m
2
H ,m

2
t) =

−(m2
H + 12m2

t + s12)

24m4
t

+ ε ·
(γE(m2

H + 12m2
t + s12)

24m4
t

+

−
(
m2
H + s12 + (m2

H + 12m2
t + s12) · ln 1

m2
t

)
24m4

t

)

g9(s12, s23,m
2
H ,m

2
t) =

1

6m4
t

+ ε ·
(1 + ln 1

m2
t
− γE

6m4
t

)

where we have dropped the terms ∼ ε · O(1
m6

t
), ∼ O(1

m6
t
) & ∼ O(ε2)

All the files required for the evaluation of these integrals using expansion by regions with py-
SecDec can be found in the ‘Expansion by regions’ folder at the Git-hub repository for this
Project : PSD gggH1L

We can define the loop integrals in the same way as we did earlier, but in order to introduce
the ‘smallness parameter’-z, we multiply all the in-variants and masses (except mt) with z. We will
also add z to the list of real parameters, and provide our loop integral to the loop regions method,
which will expand the integral in different regions. We can then proceed to sum over all regions using
the sum package.

However, the g5(s12,m
2
t) integral must be treated carefully, as it needs an additional regulator to

evaluate it. The same will be notified by pySecDec, if the integral needs an additional regulator. We
introduce the extra regulator n1 in the powers of the propagators, by consequently dividing it with
the prime numbers. Therefore, the modified conditions for g5(s12,m

2
t) should look like following :

(remaining conditions same as other integrals)
powerlist = ["1+n1", "1+ n1/2", "1+n1/3", "0+n1/5"]

regulators=["n1","eps"] requested orders = [0,1]

8Because the g1(m2
t) integral has only a single scale dependence, we cannot expand it in small ratio of scales, thus

we do not consider it.

18

https://github.com/CpSquared/PSD_gggH1L

Now we have all the integrals ready to evaluate, we can try to verify our results with the analytic
expression mentioned above, in the HTL. We will choose a set of conditions as follows and integrate
to obtain results :

[s12, s13, s23,m
2
t ,m

2
H] = [0.0009,−0.0003,−0.000442873775, 1.00, 0.000157126225]

The explicit conditions we use for the Integration are : (modify for g5(s12,m
2
t) as mentioned

earlier)

expansion by regions order = 1 requested orders = [1] z = 1
Integrator = Qmc transform="korobov3" fitfunction="polysingular"

Integrating g2(s12,m
2
t) we Obtain :

Analytic Result :
eps∧0 : -0.5000749999999999
eps∧1 : 0.288576123625634
Numerical Result :
eps∧0 : -0.500075000000000+0.000000000000000*I

+/- 3.389926606603533e-17+1.358594763071333e-17*I
eps∧1 : 0.288576123625634-0.000000000000000*I

+/- 1.956787297766954e-17+7.843700577440028e-18*I

Similalrly, we can calculate for the other integrals and verify our procedure. The output summary
for all the integrals is given in the Output Summary exp by regions.txt file in the ‘Expansion by
regions’ folder mentioned earlier.

We have successfully demonstrated the evaluation of master integrals using the method of expan-
sion by regions in the heavy top limit with pySecDec.

19

	Introduction
	The Master Integrals
	The Form Factors
	Analytic Expressions
	Implementation in pySecDec
	Error analysis & Conclusion
	Acknowledgement
	Appendix : A
	Appendix : B

